Формула тока. как найти ток. вычисляем и определяем ток по формуле закона ома
Содержание:
- Параллельное соединение резисторов
- В электрической цепи
- Законы Ньютона
- 4 вариант
- Как вычислить?
- Измерение силы тока косвенным методом с помощью электронных вольтметров.
- Расчет потребляемой мощности
- Зачем необходим расчёт силы тока и других параметров?
- История открытия закона Ома для участка цепи
- Какой ток в розетках постоянный или переменный?
- ПРИМЕРЫ ЗАДАНИЙ
- Воздействие на человека
- Основные выводы
Параллельное соединение резисторов
При параллельном расположении резисторов в сети, они имеют общую точку контакта на входе и на выходе. В этом случае общее напряжение будет соответствовать значению напряжения на каждом отрезке, а вот ток будет суммироваться (I об= I1 + I2 +I3). Это соотношение имеет большое значение для практического применения и получило название – закон разветвленной цепи.
Несмотря на то, что общий ток в цепочке резисторов, соединенных параллельно на выходе равен сумме токов в самостоятельной ветке, для конкретного участка он может отличаться. Это обусловлено тем же законом Ома, при условии разности сопротивлений. Чтобы узнать силу тока на каждом резисторе в соответствующей ветке, необходимо знать их сопротивление. При параллельном соединении, напряжение на обособленном участке, является постоянной величиной. Соответственно сила тока отельного резистора легко вычисляется по закону Ома для участка цепи.
В электрической цепи
Ток в электрической цепи подчиняется законам, открытым Г. Кирхгофом:
- в узлах цепи (в разветвлениях) геометрическая сумма токов равна нулю. Иными словами, сумма токов, подходящих к узлу, равна сумме токов, исходящих из него. Это учитывают при расчете силы тока в проводе, проложенном от распределительного щита на лестничной клетке до внутриквартирной электро-раздаточной коробки. Поскольку запитанные от коробки розетки и светильники подключены по параллельной схеме, то есть коробка представляет собой разветвление, сила тока в подводящем проводе будет равна сумме токов в светильниках и включенных в розетки приборах. На основании этих данных подбирают сечение проводов;
- на всем протяжении неразветвленного участка цепи сила тока является постоянной. То есть в простейшей цепи «источник – проводник – лампа накаливания – проводник-источник» амперметр (прибор для измерения силы тока) покажет одинаковое значение как до лампы, так и после нее. Если бы была возможность измерить силу тока в нити накаливания светильника, то и здесь она была бы такой же.
На этом явлении основано действие выключателя дифференциального тока, известного в обиходе под названием «устройство защитного отключения» (УЗО). Один контакт прибора подключается к фазе, другой — к нулевому проводу, которые по сути, являются началом и концом обслуживаемой данным УЗО цепи.
Согласно этому закону, токи в обеих частях прибора при нормальной работе цепи будут равными, независимо от вида и мощности подключенной нагрузки. Если вдруг появится разница (дифференциальный ток), это будет свидетельствовать об утечке тока.
В свою очередь, утечка означает одно из трех:
- пробило фазу на заземленный корпус электроприбора;
- человек или животное коснулись токоведущих частей и получили удар током;
- возник контакт между токоведущими частями и заземленными металлическими конструкциями, чреватый пожаром.
УЗО устроено так, чтобы при наличии дифференциального тока отключиться. Сигналом служит магнитное поле, появляющееся в приборе при утечке, тогда как при равных токах создаваемые ими магнитные поля взаимно уничтожаются.
Амперметр, в отличие от вольтметра, включается последовательно с нагрузкой, то есть в разрыв цепи (вольтметр включается параллельно).
Законы Ньютона
Влияние сил на тела впервые описал Исаак Ньютон — один из величайших физиков и математиков всех времен. Он сформировал три закона или аксиомы механики, благодаря которым мы знаем принципы работы сил. Законы Ньютона использовались при описании многих научных вопросов, например, движение спутников, влияние Луны на приливы и отливы или расчет орбит комет. Они открыли связь между силой и ускорением, что позволило ученым того времени сконструировать паровой двигатель, а позднее — двигатель внутреннего сгорания.
В 20-м веке Альберт Эйнштейн добавил правки к законам Ньютона, которые касались движения тел со скоростями, близкими к скорости света. Современные научные открытия в области теории относительности, квантовой теории и физики элементарных частиц показали, что в условиях бесконечно больших и бесконечно малых тел законы Ньютона не работают. Именно поэтому современные формулировки отличаются от законов, которые сформулирован лично сэр Исаак.
Несмотря на то, что все законы связаны, наш калькулятор в большей степени посвящен второму закону Ньютона. Рассмотрим их.
Первый закон Ньютона
Итак, если на тело не воздействуют силы, оно либо покоится, либо движется прямолинейно и равномерно. Это историческая формулировка первой аксиомы механики, которая сегодня считается неверной. Все дело в том, что Ньютон рассматривал тела в абсолютно неподвижной системе отсчета, следовательно, говорил об абсолютных пространстве и времени. Сегодняшняя физика учитывает постулаты теории относительности, поэтому определение звучит несколько иначе: есть такие системы отсчета, в которых при отсутствии сил физические объекты пребывают в состоянии покоя. Подобные системы отсчета носят название инерциальных.
Существуют и неинерциальные системы отсчета, которые сами перемещаются с ускорением или поворачиваются относительно инерциальных систем. Также возможны сопутствующие системы, связанные с самим рассматриваемым телом и движущиеся вместе с ним. Естественно, что в таких системах классическая механика не применима. Интересно, что на Земле невозможна ситуация, когда на объекты не воздействует никакая сила: гравитационное поле планеты создает постоянную силу тяжести.
Второй закон Ньютона
Авторское определение этого закона звучит непонятно: изменение количества движения пропорционально движущей силе и сонаправлено с ней. Школьная формулировка второй аксиомы механики куда проще:
F = m × a,
или сила — это произведение массы физического объекта на его ускорение.
Если же рассмотреть современную формулировку второй аксиомы, то становится ясно, что в инерциальной системе отсчета материальная точка получает ускорение прямо пропорциональное действующим силам и обратно пропорциональное своей массе или:
a = F / m.
При этом важно уточнить, что масса физического объекта не изменяется во времени. Это уточнение необходимо для релятивистской механики, в которой при достижении скоростей, близких к скорости света, масса тела начинает изменяться
Именно данный закон лежит в основе нашего калькулятора. Эта простая формула используется в большинстве задач по физике из курса «Механика». Но на повестке дня остался третий, последний закон Ньютона.
Третий закон Ньютона
Исторически закон звучит как «всякому действие существует противодействие». В современной физике такой закон не действует, и простыми словами постулат звучит так: силы возникают только попарно, и любая сила, воздействующая на тело, происходит от другого тела. Таким образом, сила — это всегда результат взаимодействия нескольких физических объектов. Не существует сил, которые возникают самостоятельно без взаимодействия тел.
Наша программа позволяет быстро определить силу, ускорение или массу тела, если известны два параметра из трех. Для использования калькулятора достаточно ввести любые два значения, после чего программа автоматически заполнит пустое поле. Калькулятор пригодится школьникам и студентам первых курсов, которые изучают механику.
4 вариант
1. Переведите в амперы силу тока, равную 700 мА и 0,25 кА.
1) 7 А и 250 А
2) 0,7 А и 25 А
3) 7 А и 25 А
4) 0,7 А и 250 А
2. Какой амперметр измерит силу тока в верхней (на схеме) лампе?
1) №1
2) №2
3) Любой из них
4) Ни один из этих приборов
3. При прохождении по участку цепи заряда 100 Кл электрический ток произвел работу, равную 12 кДж. Каково напряжение на этом участке цепи?
1) 120 В
2) 12 В
3) 1,2 В
4) 0,12 В
4. На каком приборе измеряет напряжение вольтметр, включенный так, как показано на схеме?
1) На звонке
2) На лампе
3) На реостате
5. В чем главная причина того, что проводники оказывают сопротивление электрическому току?
1) Постоянное хаотическое движение электронов
2) Столкновение упорядоченно движущихся электронов с ионами кристаллической решетки
3) Взаимодействие электронов с ионами решетки
6. Пользуясь законом Ома, получите формулу для расчета сопротивления проводника.
1) R = U/I
2) I = q/t
3) P = A/t
7. При какой силе тока напряжение на концах проводника сопротивлением 125 Ом будет равно 1,5 кВ?
1) 1,2 А
2) 12 А
3) ≈ 83 А
4) ≈ 8,3 А
8. Сила тока в реостате 0,8 А, его сопротивление 100 Ом. Определите напряжение на его клеммах.
1) 125 В
2) 12,5 В
3) 80 В
4) 800 В
9. От каких физических величин зависит сопротивление проводника?
1) От его длины (l)
2) От площади его поперечного сечения (S)
3) От удельного сопротивления (ρ)
4) От всех этих трех величин
10. Какое вещество — с малым или большим удельным сопротивлением — может служить хорошим проводником электричества?
1) С малым
2) С большим
3) Однозначного ответа нет
11. Железный провод длиной 6 м и площадью поперечного сечения 0,3 мм2 включен в цепь. Какое сопротивление он оказывает электрическому току?
1) 36 Ом
2) 18 Ом
3) 2 Ом
4) 20 Ом
12. У реостата, показанного на рисунке, когда он был включен в цепь, передвинули ползунок вправо. Как изменилась при этом сила тока?
1) Уменьшилась
2) Увеличилась
3) Не изменилась
13. Сила тока в лампе №1 равна 5 А. Какова сила тока в такой же лампе №2 и какую силу тока покажет амперметр?
1) 2,5 А; 5 А
2) 5 А ; 10 A
3) 2,5 А; 7,5 А
4) 5 А; 7,5 А
14. В цепи с последовательным соединением потребителей тока (двух ламп и резистора, обладающих одинаковыми сопротивлениями) сила тока равна 0,4 А, напряжение на резисторе 20 В. Определите общее сопротивление цепи и напряжение на полюсах источника тока.
1) 150 Ом; 40 В
2) 50 Ом; 60 В
3) 150 Ом; 20 В
4) 150 Ом; 60 В
15. В каких единицах должны быть выражены величины при расчете работы электрического тока по формуле А = IUt?
1) В амперах, вольтах и секундах
2) В амперах, вольтах, минутах
3) В вольтах, омах, часах
4) В кулонах, вольтах, секундах
16. Если известна мощность электрического тока, то как найти силу тока в цепи?
1) I = U/R
2) I = P/U
3) I = q/t
4) I = A/(Ut)
17. Электролампа, сопротивление нити накала которой 20 Ом, включена в сеть с напряжением 220 В. Какова мощность тока? Какую работу он произведет за 5 мин свечения лампы?
1) 4,4 кВт; 1320 кДж
2) 4,4 кВт; 22 кДж
3) 2,42 кВт; 22 кДж
4) 2,42 кВт; 726 кДж
18. Какая из формул выражает закон Джоуля — Ленца?
1) Q = cm(t2 — t1)
2) F = k(l2 — l1)
3) Q = I2Rt
19. Как и во сколько раз надо изменить силу тока в цепи, чтобы при уменьшении ее сопротивления в 4 раза выделение теплоты в ней осталось прежним?
1) Уменьшить в 2 раза
2) Увеличить в 4 раза
3) Уменьшить в 4 раза
4) Увеличить в 2 раза
20. Проводник обладает сопротивлением 80 Ом. Какое количество теплоты выделится в нем за 10 с при силе тока 0,3 А?
1) 7,2 Дж
2) 72 Дж
3) 720 Дж
Ответы на тест по физике Законы электрического тока1 вариант
1-2
2-1
3-4
4-2
5-3
6-1
7-4
8-2
9-2
10-3
11-4
12-2
13-3
14-1
15-3
16-2
17-4
18-3
19-1
20-32 вариант
1-2
2-4
3-4
4-2
5-1
6-3
7-2
8-2
9-1
10-3
11-4
12-1
13-4
14-2
15-3
16-3
17-1
18-4
19-2
20-23 вариант
1-3
2-3
3-2
4-1
5-3
6-4
7-1
8-4
9-3
10-2
11-3
12-1
13-4
14-1
15-3
16-2
17-1
18-2
19-3
20-24 вариант
1-4
2-4
3-1
4-2
5-3
6-1
7-2
8-3
9-4
10-1
11-3
12-2
13-2
14-4
15-1
16-2
17-4
18-3
19-4
20-2
Как вычислить?
Определить любую величину, касаемую электрической энергии, поможет закон Ома. Он гласит: напряжение равняется силе тока, умноженной на сопротивление, а мощность – это сила, умноженная на напряжение.
Напряжение тока – это его сила умноженная на сопротивление. Показатель нужен для подбора оптимальных проводов и кабелей в домеПолучается, чтобы рассчитать ток по мощности, надо знать его силу и напряжение. Но как рассчитать амперы, зная мощность и напряженность, например? Опять же следуя закону Ома. Для этого необходимо мощность разделить на напряженность.
Произвести точный расчет можно с помощью нашего калькулятора.
Достаточно просто узнать силу тока, гораздо сложнее – произвести расчет сечения проводов. Для этого нужно посчитать силу тока и воспользоваться следующей таблицей:
Сечение медного провода в зависимости от величины потребляемого тока | ||||||||||||||
Максимальный ток в амперах | 1 | 2 | 3 | 4 | 5 | 6 | 10 | 16 | 20 | 25 | 32 | 40 | 50 | 63 |
Сечение жилы провода в миллиметрах | 0,17 | 0,33 | 0,52 | 0,67 | 0,84 | 1 | 1,7 | 2,7 | 3,3 | 4,2 | 5,3 | 6,7 | 8,4 | 10,5 |
Для того чтобы посчитать мощность, зная ток и напряженность, используйте представленную ниже таблицу:
Электрическое оборудование | Мощность прибора в ваттах | Сила в амперах |
Стиральная машинка | 2000 | 10 |
«Теплый пол» | 1000 | 5 |
Кухонная плита | 7000 | 35 |
Микроволновка | 1000 | 5 |
Посудомойка | 2000 | 10 |
Холодильник | 250 | 1 |
Кухонный комбайн | 1100 | 5 |
Чайник | 1900 | 9 |
Кофеварка | 1100 | 5 |
Миксер | 300 | 1,4 |
Фен | 1000 | 2 |
Утюг | 1500 | 6 |
Пылесос | 1200 | 5 |
Телевизор | 150 | 0,7 |
Радио | 100 | 0,4 |
Светильники | 50 | 0,2 |
Используя даже один из показателей и зная напряжение в сети, вы сможете без труда рассчитать ток.
Измерение силы тока косвенным методом с помощью электронных вольтметров.
Поскольку между напряжением и током в электрической цепи имеется линейная связь (согласно закону Ома), то ток можно измерить косвенным методом, измерив вольтметром напряжение на сопротивлении эталонного резистора Rэ, силу тока находим по формуле:
Ix = Uэ/ Rэ, где Uэ– напряжение, измеренное вольтметром; Ix– ток, подлежащий определению; Rэ –активное эталонное сопротивление известного номинала.
Однако при измерении малых токов подобная методика может оказаться неприемлемой. В этом случае в измерительных приборах применяют схему входного усилительного каскада с достаточно малым входным сопротивлением.
При измерении тока необходимо выбирать такие приборы, у которых потребляемая мощность значительно меньше мощности, рассеиваемой в исследуемой цепи. Этим и объясняется стремление иметь в амперметрах возможно меньшее сопротивление.
Амперметры магнитоэлектрической системы успешно сочетают высокую точность с малым потреблением мощности и имеют равномерную шкалу. Наиболее точные приборы магнитоэлектрической системы имеют классы точности 0,1; 0,2.
Приборы электродинамической системы предназначены для измерения токов от 10 мА до 100 А. По точности они эквивалентны приборам магнитоэлектрической системы, но потребляют значительно большую мощность и имеют неравномерную шкалу.
Приборы ферродинамической системы применяются для измерения постоянных токов очень редко из-за низкой точности и большой потребляемой мощности.
Приборы электромагнитной системы используются для измерения токов от 10 мА до 200 А. Наиболее точные приборы этой системы имеют классы точности 0,2; 0,5. Их главное достоинство — низкая стоимость.
В тех случаях, когда необходимо измерить ток с высокой точностью, используют потенциометры постоянного тока, цифровые амперметры. Классы точности наиболее точных потенциометров 0,001; 0,002, цифровых амперметров 0,02. Цифровые амперметры измеряют ток до нескольких ампер.
Измерение тока при помощи потенциометра проводят косвенным путем — искомый ток определяют по падению напряжения на образцовом резисторе. Погрешность измерения в этом случае возрастает за счет погрешностей образцового резистора. Преимуществом потенциометров и цифровых приборов является малое потребление мощности, особенно при измерении напряжений.
Измерение больших токов и напряжений. Шунтирование магнитоэлектрических приборов дает возможность измерять постоянные токи до нескольких тысяч ампер. Отдельные шунты на токи свыше 10 кА не изготовляются из-за их больших размеров и большой стоимости. Поэтому для измерения больших токов часто используют несколько шунтов, соединенных параллельно (рис. 9.3).
Несколько одинаковых шунтов подключают в разрыв шины, а проводники от потенциальных зажимов всех шунтов подводят к одному и тому же прибору. При равенстве сопротивлений R шунтов и сопротивлений R потенциальных проводников наличие переходных сопротивлений в местах присоединения шунтов к шинам R11, R12, R21, R22, R31и R32не отражается на показаниях прибора, а ведет лишь к неравномерному распределению токов между шунтами. Ток Iy, протекающий через прибор, определяется только сопротивлениями шунтов, потенциальных проводников и прибора, т. е. точно так же, как и при измерении тока с помощью одного шунта. Практически используют несколько однотипных шунтов.
Но этот способ не дает возможности отделить цепь прибора от цепи измеряемого тока, что не позволяет применять его в цепях высокого напряжения, где требуется заземлять цепь прибора для защиты обслуживающего персонала. При измерении тока в цепях высокого напряжения рекомендуется использовать гальванически развязанную измерительную цепь на основе датчиков Холла.
Расчет потребляемой мощности
Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.
Вам это будет интересно Обозначение разного электрооборудованья на схемах
Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.
Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.
Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации. Подсчет потребляемой мощности
Подсчет потребляемой мощности
Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.
Что влияет на мощность тока
Добавление электрического сопротивления позволяет учесть потери в подключенной цепи (нагрузке). В формуле нахождения мощности для полной цепи учитывают параметры источника питания. Для более точного анализа следует оценить скорость потребления энергии на единицу объема проводника (ΔV).
Мощность равна формуле:
Pуд = Rуд * j2,
где:
- Rуд – удельное сопротивление;
- j – плотность тока соответствующего участка цепи.
Из этого выражения понятна зависимость расхода электричества от проводимости. Данное соотношение определяет требования к используемой кабельной продукции. При недостаточном сечении (высоком уровне примесей) увеличивается нагрев. Аналогичный результат получают при подключении мощной нагрузки. На определенном уровне произойдет тепловое разрушение материала.
К сведению. Этот процесс является причиной типичных аварийных ситуаций. Для предотвращения повреждений применяют специализированную технику – автоматические выключатели.
Отличия мощности при постоянном и переменном напряжении
Ведем обозначения электрических величин, которые приняты в нашей стране:
- Р − активная мощность, измеряется в ваттах, обозначается Вт;
- Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
- S − полная мощность, измеряется в вольт амперах, обозначается ВА;
- U − напряжение, измеряется в вольтах, обозначается ВА;
- I − ток, измеряется в амперах, обозначается А;
- R − сопротивление, измеряется в омах, обозначается Ом.
Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.
Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.
Зачем необходим расчёт силы тока и других параметров?
Различные электрические приборы потребляют разное количество электроэнергии. Если бы в квартире или доме находился только один электроприбор, то подобные вычисления были бы не нужны.
Основным показателем электрической энергии является напряжение. Измеряется в вольтах, обозначают латинской U. Напряжение зависит:
- от материала, из которого выполнена проводка;
- сопротивления, которое выдает конкретный прибор;
- температуры окружающей среды и прибора.
Различают напряжение:
- постоянное;
- переменное.
Один из приборов с постоянным напряжением – обычная батарейка. В сложных электроцепях напряжение всегда переменное. Его и передают на большие расстояния от электростанций к зданиям. В нашей стране для этого применяют сети с тремя фазами. 4 провода (3 – фазных, 1 – нулевой) можно увидеть между опорами ЛЭП. От ЛЭП к домам и зданиям ведут 2 или 4 провода. В первом случае получаем сеть с напряжением в 220 вольт, во втором – 380 вольт. Для безопасности людей имеется заземление.
От опоры ЛЭП к домам ведут 2 или 4 провода. Так создают сети в 220 или 380 вольт
Силу измеряют в амперах, обозначают латинской I. На всем протяжении электроцепи сила одинакова. Чтобы измерить показания, применяют специальное оборудование – амперметр или мультиметр. Такой прибор должен быть на вооружении любого практичного хозяина. Для бытовых целей лучше использовать мультиметр.
Он прост в управлении, стоит около 500 рублей
Обратите внимание на модели от производителей: «TEK», «Ресанта», «Sturm!», «Defort».. Сопротивление измеряют в омах
Возникает в момент движения электрической энергии внутри провода. Для обозначения используют латинскую R. Показатель определяется исходя из материала провода и его сечения. Часто применяют термин «удельное сопротивление». Величина показывает сопротивляемость различных материалов, толщины и длины проводов
Сопротивление измеряют в омах. Возникает в момент движения электрической энергии внутри провода. Для обозначения используют латинскую R. Показатель определяется исходя из материала провода и его сечения. Часто применяют термин «удельное сопротивление». Величина показывает сопротивляемость различных материалов, толщины и длины проводов.
Мощность указывают в ваттах. Для обозначения применяют латинскую P. Для расчета нужно знать силу тока, его напряжение. Сопротивление «гасит» мощность любого электрооборудования. Чтобы оно работало нормально, источник питания должен выдавать большую силу тока, чем нужно для работы определенного прибора или группы приборов.
История открытия закона Ома для участка цепи
Вспомним, что несколько предыдущих уроков были посвящены изучению таких физических величин, как сила тока, напряжение и сопротивление. Мы рассмотрели природу возникновения электрического сопротивления, единицу его измерения и вкратце указали, от каких общих факторов оно зависит. Также мы знаем, что сила тока зависит от электрического поля, которое возникает в проводнике, а напряжение зависит от работы этого поля. Но электрический ток – это упорядоченное движение заряженных частиц, которое также характеризуется работой электрического тока. Следовательно, должна быть какая-нибудь связь между всеми этими понятиями: сила тока, напряжение, сопротивление.
Впервые определил эту зависимость в 1826 году немецкий физик Георг Ом (1789–1854) (рис. 1). Он провел очень большое количество экспериментов, в которых, прежде всего, исследовал зависимость силы тока в цепи от напряжения. Проводились его эксперименты следующим образом: ничего не меняя в электрической цепи, он подключал к ней различное большее число источников тока, в результате чего увеличивалось напряжение, подаваемое в цепь, что приводило к увеличению силы тока. Такие многочисленные эксперименты привели к получению закона силы тока от электрического сопротивления.
Опишем схему проведения экспериментов Георга Ома. В электрическую цепь он подключал проводник, на котором с помощью вольтметра и амперметра измерялись напряжение и сила тока соответственно, ключ и источник тока (рис. 2)
Обратим внимание на то, что в цепи подключено несколько источников тока, и изменение их количества позволяет пронаблюдать за изменением силы тока в цепи в зависимости от напряжения
Рис. 2. Схема экспериментов Г. Ома
В результате измерений прослеживается зависимость , где напряжение измеряется на зажимах AB, т. е. на проводнике.
Для того чтобы пронаблюдать зависимость силы тока от сопротивления, в той же цепи теперь следует не менять количество источников тока, а менять проводники, т. е. сопротивление цепи. Георг Ом поступил следующим образом: вместо одного проводника он подключил другой с вдвое большей длиной, т. е. с вдвое большим сопротивлением (почему это так, вы узнаете на следующем уроке). Аналогично он подключал и проводники с другими длинами и получил зависимость такого вида: . Т. е. при увеличении сопротивления проводника сила тока в нем уменьшается.
На графике зависимость силы тока в проводнике от сопротивления выглядит следующим образом (рис. 3).
Рис. 3. Зависимость силы тока в проводнике от сопротивления
Такая зависимость называется обратно пропорциональной. Эту зависимость Ому пришлось достаточно долго получать, но именно это и привело его к выводу важнейшего закона электродинамики – закону Ома для участка цепи. Собрав вместе те две зависимости, которые мы показали выше, Ом и пришел к своему закону.
Какой ток в розетках постоянный или переменный?
98% вырабатываемой энергии – это переменный ток, и домашняя проводка не исключение. Переменный ток – это тот, который периодически изменяет величину и направление. Частота измеряется в Герцах (период изменения в секунду). Переменный ток производить намного легче чем постоянный, также не вызывает сложностей передача на большие расстояния. При передачи электроэнергии величина напряжения может как увеличиваться, так и уменьшаться неоднократно, поэтому розетки делаются для переменного значения. Но также существуют электронные приборы, которые питаются постоянным током, и их нужно приводить к одному типу.
Преимущества:
- легко передавать на большие расстояния;
- простое генераторное оборудование, упрощение устройства электродвигателей;
- отсутствие полярности.
Недостатки:
- расчеты проводятся на максимальное значение, по факту используется не более 70%;
- электромагнитная индукция, приводящая к неравномерному распределению электричества по сечению проводника;
- сложность проверки и измерения параметров;
- увеличивается сопротивление, так как используется не весь кабель.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?
1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза
2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?
1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза
3. Сопротивления резистор \( R_1 \) в четыре раза меньше сопротивления резистора \( R_2 \). Работа тока в резисторе 2
1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1
4. Сопротивление резистора \( R_1 \) в 3 раза больше сопротивления резистора \( R_2 \). Количество теплоты, которое выделится в резисторе 1
1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2
5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если
1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую
6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) и \( A_2 \) в этих проводниках за одно и то же время.
1) \( A_1=A_2 \)
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)
7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) и \( A_2 \) в этих проводниках за одно и то же время.
1) \( A_1=A_2 \)
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)
8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то
А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.
Верным(-и) является(-ются) утверждение(-я)
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?
1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А
10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?
1) 10000 с
2) 2000 с
3) 10 с
4) 2 с
11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой
ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась
12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока
ФОРМУЛЫ
1) \( \frac{q}{t} \)
2) \( qU \)
3) \( \frac{RS}{L} \)
4) \( UI \)
5) \( \frac{U}{I} \)
Часть 2
13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?
Воздействие на человека
В большинстве случаев электрический ток представляет собой поток электронов. Поскольку ампер является мерой количества заряда, проходящего в секунду, нетрудно будет посчитать количество электронов в перемещённом заряде: 1 Кл = 6,24151·10 18. То есть один ампер равен потоку 6340 квадриллионов частиц в секунду. Это колоссальная цифра, но вряд ли она иллюстративна для сравнительного понимания, когда показатель чего-либо измеряют в амперах. В этом помогут следующие повседневные примеры:
- 160х10 -19 — один электрон в секунду;
- 0,7х10 -3 — слуховой аппарат;
- 5х10 -3 — пучок в кинескопе телевизора;
- 150х10 -3 — портативный ЖК телевизор;
- 0,2 — электрический угорь;
- 0,3 — лампа накаливания;
- 10 — тостер, чайник;
- 100 — стартер автомобиля;
- 30х10 3 — удар молнии;
- 180х10 3 — дуговая печь для ферросплавов;
- 5х10 6 — дуга между Юпитером и Ио.
Порог смертельно опасного воздействия на человеческий организм начинается с 18 мА. Ток, превышающий это значение и проходящий через грудную клетку, способен стимулировать мышцы груди таким образом, что их спазмы могут вызвать полную остановку дыхания. Другой опасный эффект при подобном воздействии связан с фибрилляцией желудочков сердца. Основные факторы летальности:
- Сила тока. Так как сопротивление между точками входа и выхода — постоянная величина, по закону Ома высокое напряжение делает вероятным высокий ампераж.
- Маршрут протекания. Наиболее опасны для сердечной мышцы направления рука-рука и передняя-задняя части грудной клетки.
- Индивидуальная чувствительность к воздействию электричества и особенности организма (сопротивление кожи и её влажность, возраст и пол, заболевания, наличие медицинских имплантов).
- Продолжительность воздействия.
Основные выводы
Возможность определения рабочих характеристик светодиода позволяет создать для него оптимальный режим функционирования. В результате элемент сможет продемонстрировать максимальный срок службы и эффективность, выдать достаточную яркость свечения без перегрузок. Знание номинальных параметров устройства позволит исправить ошибки соединения, подобрать наиболее подходящий тип источника питания, избежать аварийных ситуаций или перегрузок. Умение грамотно определить характеристики светодиода подразумевает знание различных методик проверки, от простого определения работоспособности, до более детальной проверки рабочего тока, напряжения и мощности. Это расширит возможности и позволит использовать один из вариантов, доступный в заданных условиях.
Предыдущая
СветодиодыКак выбрать светодиодные светильники для гаража и организовать освещение
Следующая
СветодиодыЧто лучше: галогеновые или светодиодные лампы для дома и в авто