Фазные и линейные токи и напряжения. численные соотношения между фазными и линейными величинами
Содержание:
- Фазное и линейное напряжение в трехфазных цепях
- Цепи переменного тока
- Расчет линейного и фазного напряжения
- Использование линейного и фазного напряжения
- В чем измеряется
- Аварийные режимы трёхфазной цепи при соединении нагрузки в звезду
- Почему постоянный ток безопаснее
- Что такое трехфазный ток
- Схемы подключения трёхфазных двигателей
- Схема
- Что это такое, и как его исправить?
- Почему используют трехфазный ток
- Маркировка
- Отличия
- Номинальные напряжения
- В чем главные отличия линейного и фазного напряжения?
Фазное и линейное напряжение в трехфазных цепях
Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.
Линейное – определяется как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз.
Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.
В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин – 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные – на 220 вольт.
Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом отсутствие заземления повышает риск поражения током, когда нарушена изоляция.
Цепи переменного тока
Как известно, электроснабжение в России осуществляется с помощью цепей переменного тока с частотой 50 Гц. За одну секунду совершается 50 циклов. Полный цикл представляет собой круг, угловой размер которого можно измерить в градусах и радианах — 360 градусов радиан или 2π радиан. Соответственно, половина этого цикла будет 180 или π радиан, треть — 120 или 2 π/3 и т. д. Конкретный момент этого цикла и называется фазой. Цепи в стране синхронизированы в единую систему.
Сдвиг по фазе в цепи
Это выражение не имеет ничего общего со здоровьем головного мозга. Таким термином объясняют несовпадение графиков тока и напряжения, что бывает на участках с катушками или конденсаторами, а также сравнение фаз в разных проводах. При трехфазной системе электроснабжения сдвиг составляет 120 градусов или 2 π/ 3 радиан.
Вот так выглядит наложение графиков напряжений в трех проводах, идущих от трансформаторной будки. Слева даже наглядно показано, как такое можно получить от простой турбины.
Действующие показатели тока и напряжения
Максимальная амплитуда напряжения в цепи, идущей от трансформаторной подстанции во дворе, составляет 310 В. За 1 с она бывает 100 раз — внизу и вверху графика. Мгновенные значения этого параметра зависят от фазы, в которой находится график. Естественно, для потребителей такое представление крайне неудобно, поэтому в обиходе используется понятие действующего напряжения.
Его формула была выведена экспериментально на основе закона Джоуля-Ленца. Суть вывода этой формулы заключается в том, что действующее значение переменного тока эквивалентно значению постоянного при одинаковом выделении теплоты. Коэффициент, который используется при вычислении, равен √2. Зная это, можно воспользоваться правилом:
I=I m/ √2, U=Um/√2,
где I m и Um — амплитуда. Если подставить во вторую формулу значение амплитуды, то получается, что действующее напряжение фазного провода относительно земли в квартире составит 230 В. Оно еще называется фазным. Ну, а величина тока будет зависеть от нагрузки, согласно закону Ома:
I=U/R.
Ток в фазном проводе тоже будет называться фазным.
Расчет линейного и фазного напряжения
Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.
Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.
Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:
∑ Ik = 0;
Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.
И закон Ома:
I=U/R;
Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.
В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:
IL = IF;
Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.
Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.
Для этого, применяют формулу:
Uл=Uф∙√3, где:
Uл – линейное, Uф – фазовое. Формула справедлива, только если – IL = IF.
При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.
При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:
Q = Qа + Qb + Qс;
Идентичная структура формулы активной мощности:
P = Pа + Pb + Pс;
Примеры расчета:
Например, катушки трехфазного источника тока подключены по схеме «звезда», их электродвижущая сила 220В. Необходимо вычислить линейное напряжение в схеме.
Линейные напряжения в этом подключении будут одинаковы и определяются как:
U1=U2=U3= √3 Uф=√3*220=380 В.
Использование линейного и фазного напряжения
Электрические цепи бывают постоянного и переменного тока. Чаще для соединения источника электричества с потребителем используются трехфазные цепи переменного тока. Такой тип тока имеет ряд преимуществ:
- ниже затраты на передачу энергии;
- возможность создания электродвижущей силы для функционирования асинхронного оборудования (лифтов, подъемников);
- можно одновременно использовать линейное и фазное напряжение.
Для подключения генераторов в магистраль используют принцип треугольника или звезды. В первом варианте обмотки подсоединяются последовательно, начало фазы и конец другой фазы соединены. Схема позволяет повысить напряжение в несколько раз. Во втором случае начальные участки обмоток объединяются в общую точку, повышение мощности не происходит.
Классификация электросети по составу рабочих элементов:
- активная;
- пассивная;
- линейная;
- нелинейная.
Используя 4 кабеля в магистрали, можно, варьируя подключения, использовать одновременно линейные и фазные токи, что расширяет область применения. Трехфазные магистрали считаются универсальными, т. к. подключается большая нагрузка, например, к сети в 10 вольт. Если подсоединить к линии соответствующий приемник, например, трехфазный электрический двигатель, то его механическая мощность достигнет величин, в 3 раза превышающих показатели однофазного агрегата.
В многоквартирном секторе основными приемниками являются бытовые устройства и приборы, питающиеся от сети 220 В. Требуется равномерное разделение между проводами с нагрузкой, поэтому квартиры подключаются по шахматной схеме. В частном домостроении принята концепция рассредоточения нагрузки на каждый кабель от всех домашних приборов и оборудования. Учитываются проводниковые токи, передающиеся во время включения максимального числа устройств.
Включая в сеть с 1 или 3 фазами одинаковые электрические двигатели, можно получить разницу в мощности его работы. Если дополнительно выбрать эффективный способ подключения, то показатели на выходе повысятся втрое. Учитывая соотношение между фазными и линейными токами, следует рассчитывать обмотки на повышенные значения. Относительный показатель разницы зарядов между нагруженными проводами всегда больше аналогичного значения между фазой и нулем. Основное отличие линейных характеристик напряжения и мощности фазы состоит в параметрах получаемого вольтажа.
Классическим примером применения обоих видов напряжения является соединение при установке трехфазного генератора. Используются вторичные обмотки и первичные обвивки, соединяемые по одной из схем. Связь линейного напряжения и значения фазы при соединении по типу треугольника помогает выравнивать ток, и обе мощности становятся почти одинаковыми. Аналогично подсоединяются двигатели, преобразователи и трансформаторы.
Вариант звезды предполагает подсоединение контактов всех обмоток к одной цепи с применением перемычек. В проводниках проходит ток с показателями этой сети, а напряжение передается на активные выводы и контакты.
В чем измеряется
Согласно ГОСТ 13109 норма напряжения в электрической сети варьирует в диапазоне от 198В до 242В (то есть 220В плюс или минус 10 процентов). При частой поломке бытовой техники, ламп или их мигании потребуется измерение напряжения в электрической проводке. Подобная проверка делается мультиметром или вольтметром. Ночью, когда электроприборы используются по минимуму, полученные значения будут максимальными.
Мультиметром измеряется напряжение в трёхфазной сети так:
- Между рабочим 0 и каждой из фаз: А-N, В-N, С-N.
- Линейные напряжения: А-В, А-С, В-С.
Всего должно получиться шесть измерений. Иногда делается ещё один замер — между заземляющим и нулевым рабочим проводником: N-PE.
Аварийные режимы трёхфазной цепи при соединении нагрузки в звезду
Аварийными являются режимы, возникают при коротких замыканиях в нагрузке или в линиях и обрыве проводов. Остановимся на некоторых типичных аварийных режимах.
Обрыв нейтрального провода при несимметричной нагрузке
В симметричном режиме IN = 0, поэтому обрыв нейтрального провода не приводит к изменению токов и напряжений в цепи и такой режим не является аварийным. Однако, при несимметричной нагрузке IN ¹ 0, поэтому обрыв нейтрали приводит к изменению всех фазных токов и напряжений. На векторной диаграмме напряжений точка «0» нагрузки, совпадающая до этого с точкой «N» генератора, смещается таким образом, чтобы сумма фазных токов оказалась равной нулю (рис.3). Напряжения на отдельных фазах могут существенно превысить номинальное напряжение.
Рис. 3.
Обрыв фазы при симметричной нагрузке в схеме с нулевым проводом
При обрыве провода, например, в фазе А ток этой фазы становится равным нулю, напряжения и токи в фазах В и С не изменяются, а в нулевом проводе появляется ток
IN = IB + IC. Он равен току, который до обрыва протекал в фазе А (рис. 4).
Рис.4
Обрыв фазы при симметричной нагрузке в схеме без нулевого провода
При обрыве, например, фазы А сопротивления RA и RB оказываются соединёнными последовательно и к ним приложено линейное напряжение UBC. Напряжение на каждом из сопротивлений составляет от фазного напряжения в нормальном режиме. Нулевая точка нагрузки на векторной диаграмме напряжений смещается на линию ВС и при RB = RC находится точно в середине отрезка ВС (рис.5)
Рис.5
Короткое замыкание
При коротком замыкании фазы нагрузки в схеме с нулевым проводом ток в этой фазе становится очень большим (теоретически бесконечно большим) и это приводит к аварийному отключению нагрузки защитой. В схеме без нулевого провода при замыкании, например, фазы А, нулевая точка нагрузки смещается в точку «А» генератора. Тогда к сопротивлениям фаз В и С прикладываются линейные напряжения. Токи в этих фазах возрастают в раз, а ток в фазе А – в 3 раза (рис. 6).
Короткие замыкания между линейными проводами и в той и в другой схеме приводят к аварийному отключению нагрузки.
Рис.6
Лабораторная работа № 13
Трёхфазная нагрузка, соединённая по схеме «ЗВЕЗДА»
Цель работы:
Исследовать трёхфазную цепь, соединённую по схеме «ЗВЕЗДА», в различных
режимах работы.
Задание.
Для трёхфазной цепи с соединением «ЗВЕЗДА» при симметричной и несимметричной нагрузках измерьте с помощью мультиметра действующие значения фазных и линейных напряжений и ток в нейтральном проводе. Вычислите линейные токи и мощности фаз. Постройте в масштабе векторные диаграммы напряжений и токов.
1.Соберите цепь с симметричной нагрузкой (RA= RB= RC=1кОм) согласно схеме.
2.Измерьте действующие значения напряжений и тока в нейтральном проводе согласно табл. 1 и вычислите токи и мощности фаз.
3.Повторите измерения и вычисления для несимметричной нагрузки (RA=1 кОм,
RB=680 Ом, RC=330 Ом).
4.Постройте в масштабе векторные диаграммы напряжений и токов.
Таблица 1
Установлено |
Измерено |
||||||||
RA |
RB |
RC |
UA (B) |
UB (B) |
UC (B) |
UAB B |
UBC B |
UCA B |
IN мА |
1кОм |
1кОм |
1кОм |
|||||||
1кОм |
680 Ом |
330 Ом |
Продолжение таблицы 1
Вычислено |
||||||
IА, мА |
IВ, мА |
IС, мА |
PA, Bт |
PВ, Bт |
PС, Bт |
SP, Bт |
Линейные токи равны фазным и определяются по закону Ома:
а ток в нейтрали равен векторной сумме этих токов:
Мощность трёхфазной нагрузки складывается из мощностей фаз: SP= PA+ PВ+ PС
Когда нагрузка симметричная и чисто резистивная, имеем: SP= 3PФ=3UФ* Iф
При смешанной (активно-индуктивной или активно-ёмкостной) нагрузке:
Активная мощность: SP= 3UФ* Iф*cos φ= *Uл* Iл*cos φ ( Bт )
Реактивная мощность: SQ=3UФ* Iф*sin φ= *Uл* Iл* sin φ ( BАр )
Полная мощность: SS=3UФ* Iф= *Uл* Iл ( B*А)
Задание.
Экспериментально исследовать аварийные режимы трёхфазной цепи при соединении нагрузки в «ЗВЕЗДУ».
Аварийными являются режимы, возникающие при коротких замыканиях в нагрузке или в линиях и обрыве проводов.
Порядок выполнения работы.
1.Измерьте действующие значения напряжений и тока в нейтральном проводе согласно таблицы 2 и вычислите токи в фазах (ток короткого замыкания в фазе А определить по векторной диаграмме токов).
2.Постройте в масштабе векторные диаграммы напряжений и токов.
Таблица 2
Установлено |
Измерено |
||||||||
RA |
RB |
RC |
UA B |
UB B |
UC B |
UAB B |
UBC B |
UCA B |
IN мА |
Обрыв фазы А |
|||||||||
1кОм |
1кОм |
1кОм |
|||||||
Обрыв нейтрали |
|||||||||
1кОм |
680 Ом |
330 Ом |
|||||||
Обрыв фазы А без нейтрали |
|||||||||
1кОм |
1кОм |
1кОм |
|||||||
Схема без нейтрали к. з. в фазе А |
|||||||||
1кОм |
1кОм |
1кОм |
Продолжение таблицы 2
Почему постоянный ток безопаснее
Прожжённые электрики говорят, что удар током 220 В не слишком опасен, главное – не попасть под линейное трёхфазное напряжение. Оно выше примерно в корень из трёх раз (в пределах 1,7). Линейным называется напряжение между двумя фазами. За счёт сдвига между ними в 120 градусов получается указанный любопытный эффект. Невежды спрашивают, какая разница при сдвиге 90 градусов. Ответ дан вначале – три фазы образуют симметричную систему. Со сдвигом 90 понадобилось бы четыре.
В результате каждым линейным напряжением питают по полюсу, что существенно упрощает их размножение, когда требуется достичь большой мощности. К примеру, в тяговых двигателях пароходов, где требуется чрезвычайно плавно изменять усилие и приходится применять регуляторы скорости вращения вала. Случается, трёх и даже шести полюсов оказывается мало. Лишь коллекторному двигателю пылесоса достаточно двух.
Итак, между фазами имеется 308 В. Безопасным выглядит, если повысить частоту линии передач до 700 Гц. Тесла установил, что с указанного значения ярко проявляется скин-эффект, ток не проникает глубоко в тело. Следовательно, не наносит существенных повреждений человеку. Учёный демонстрировал языки молний на теле при гораздо больших напряжениях и говорил, что это полезно для здоровья, здорово очищает кожу.
Частота 700 Гц (или выше) не пущена в обиход – при этом существенно увеличивались потери трансформаторов. На момент принятия решения о номиналах первой ГЭС переменного тока не существовало наработок по изготовлению электротехнических материалов. Подробнее предлагаем прочитать в теме электронных трансформаторов. Нет надобности дублировать информацию. По причине отсутствия нужных материалов потери на перемагничивание сильно росли с увеличением частоты. Сегодня подобное не вызывает затруднений на уровне технологии.
Встаёт сложность – экранирование. В годы первых попыток передачи энергии не знали об излучении. Радио делало первые шаги в 90-х годах XIX века. В действительности рост частоты сопровождается резким повышением выброса энергии в пространство. И провода требовалось экранировать, это дорого, требует наличия мощных диэлектриков. Не факт, что современные сети сумели бы решить задачу.
Тесла предлагал передавать энергию через эфир. Для чего построил башню Ворденклиф. Но… промышленники оказались заинтересованы в продаже меди на изготовление проводов и на этом основании отказали учёному в финансировании. Но главное – грядёт время, когда трёхфазное напряжение уйдёт в небытие или будет получаться из преобразователей, и сам Тесла даст ответ, как это сделать.
Точнее, ответ дадут многочисленные патенты и идеи изобретателя. Недаром записи были немедленно изъяты после смерти учёного и тщательно засекречены. Рекомендуем взяться за изучение кавитационных двигателей. Пора мечтать, что машины станут ездить на растительном масле, не загрязняя окружающую среду отвратительным дымом и гарью
Обратите внимание, что все секреты лежат на поверхности и ждут желающего их раскрыть. Возможно, кто-то из читателей сумеет сделать это первым?
Что такое трехфазный ток
Это система, объединяющая три электроцепи с токами, которые разнятся по фазе на 1/3 периода. Причём их собственные ЭДС совпадают по частоте и амплитуде и имеют такой же фазовый сдвиг. У такой структуры фазное и линейное напряжения соответственно равны 220 В и 380 В. Частота периодических колебаний – 50 герц (Гц).
Если подключить к осциллографу токовые синусоидальные сигналы от трёхфазной сети, то можно будет увидеть, что они совершают прохождение своих точек максимума в регулярной фазовой последовательности.
Общая формула мощности переменного тока:
P = I*U*cosϕ,
где:
- P – мощность, (Вт);
- I – ток, (А);
- U – напряжение, (В);
- cosϕ – коэффициент мощности.
Значение cosϕ должно стремиться к единице. Средний коэффициент мощности лежит в интервале 0,7-0,8. Чем он выше, тем больше КПД установки.
В случае 3-х фазных сетей мощность будет зависеть от схемы соединения источника и нагрузки.
График трёхфазного тока
Схемы подключения трёхфазных двигателей
Существует два способа подключения к трёхфазной сети, причём это касается не только электродвигателей. Нагревательные элементы также можно подключить «звездой» или «треугольником». Попробуем понять, в чём заключается различие между ними.
ФОТО: siemens-com.ruЭлектродвигатель можно подключить двумя способами
«Звезда» и её особенности
Соединение «звезда» представляет собой следующее: к началу каждой обмотки подключается фазный провод, а все концы соединяются между собой. При этом в месте соединения образуется «технический ноль». Он крайне нестабилен, а потому не используется в электрической цепи.
Подобное соединение не позволяет двигателю выйти на полную мощность, однако это способствует увеличению срока службы оборудования. Также, в защиту подобного соединения можно сказать, что пуск двигателя будет очень плавным, оборудование сможет переносить кратковременные перегрузки и меньше нагреваться. Поэтому, если максимальная мощность электромотора не требуется, лучше всего выбрать именно способ подключения «звездой».
ФОТО: rusenergetics.ruСоединение «звезда» поможет увеличить срок службы электромотора
«Треугольник»: плюсы и минусы способа подключения
Здесь обмотки соединяются последовательно. Начало одной из них коммутируется с концом другой. Такой вариант имеет определённые недостатки, такие, как высокие пусковые токи и перегрев при длительной работе. Однако есть здесь и значительные преимущества перед соединением «звезда». Оборудование, при подобном подключении, выдаёт максимальную мощность, что зачастую становится решающим критерием при выборе способа монтажа. Электродвигатели, подключённые «треугольником» развивают максимальный крутящий момент. Чаще всего соединение «треугольник» используют для подключения агрегатов с большой мощностью, например, станков в промышленных цехах.
ФОТО: infourok.ruСоединение «треугольник» позволяет использовать максимальную мощность оборудования
Комбинированный вариант соединения
В некоторых случаях используется комбинированный вариант «звезда-треугольник». Электродвигатель мягко запускается на соединении «звезда», а после того, как набирает необходимые обороты, реле переключает его на «треугольник». Однако не все двигатели можно подключить подобным образом. К примеру, существуют электромоторы, имеющие всего 3 вывода в контактной группе. Они изначально изготовлены под соединение «звезда» и подключить их «треугольником» невозможно.
ФОТО: meganorm.ruКомбинированное соединение подойдёт не для всех типов двигателей
Если объединить распространённые типы включения в трёхфазную сеть, можно увидеть следующую картину.
ФОТО: birmaga.ruНаиболее распространённые типы включения в трёхфазную сеть
Схема
Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.
Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.
Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность – 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.
Что это такое, и как его исправить?
Что такое перекос фаз: Перекос фаз – это состояние электрической сети, при котором одна или две из трех фаз нагружены сильнее, чем остальные. При этом наблюдается значительное снижение мощности трехфазных электрических приборов, преимущественно двигателей и трансформаторов. Но это, что касается промышленных сетей.
В бытовых условиях перекос наблюдается более выражено, при этом может даже возникать риск выхода из строя электроприборов с преобладающей реактивной нагрузкой. К таким относятся компрессоры холодильников, вентиляторы, приборы с простыми силовыми трансформаторными источниками питания. То все то, что не имеет четкой гальванической развязки с сетью и схему защиты от перенапряжений и просадок.
Большинство сетей являются трехфазными. Если в них нагрузка распределена неравномерно, в следствии чего одна или две фазы перегружены, а третья (или же две) недогружена, происходит перекос. На практике это может выглядеть следующим образом: подавляющее большинство однофазных нагрузок питаются от одной фазы, тогда как остальные могут быть вовсе не задействованы либо использоваться по минимуму.
Наиболее часто встречаются ситуации неисправности, в которых при подключении электропитания к трансформаторам не учитывается их потребляемая мощность. Таким образом, бывает, что физически фазы имеют приблизительно одинаковое количество подключений, но вот потребляемая этими подключениями мощность существенно отличается.
Сосредоточие на одной из фаз приборов с высоким потреблением электричества неизбежно вызывает неравномерную нагрузку между фазами
То же самое можно сказать и об общественных и промышленных объектах – во всех случаях очень важно следить за равномерным распределением нагрузки между имеющимися фазами, это позволит предотвратить возникновение сложностей
Почему используют трехфазный ток
Зная, что такое трехфазный ток, можно однозначно ответить на вопрос, почему он применяется.
Трехфазные системы переменного тока обладают целым рядом преимуществ, которые позволяют им выделяться среди многофазного построения электрических структур. К плюсам можно отнести следующие особенности:
- экономичное транспортирование энергии на дальние расстояния без снижения параметров;
- 3-фазные трансформаторы и кабели обладают меньшей материалоёмкостью, в отличие от однофазных моделей;
- возможность обеспечить сбалансированность энергосистемы;
- одновременное присутствие в установках двух напряжений для работы: фазное напряжение (220 В) и линейное (380 В).
К сведению. Подключение люминесцентных ламп к разным фазам и установка их в один светильник значительно уменьшат стробоскопический эффект и заметное глазу мерцание.
Неотъемлемой частью оборудования любого производственного предприятия являются асинхронные двигатели. Для их нормальной работы и развития паспортной мощности необходимо 3-х фазное питание. Оно обеспечивает возможность образования вращающегося МП (магнитного поля), которое приводит в движение ротор асинхронной машины. Такие двигатели экономичнее, проще в изготовлении и просты в эксплуатации, по сравнению с однофазными или любыми другими.
На электростанциях любого типа (ГЭС, АЭС, ТЭС), а также альтернативных обеспечено производство электроэнергии переменного типа при помощи генераторов.
Трёхфазная линия электропередач 10 кВ
Маркировка
Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.
Трёхфазная двухцепная линия электропередачи
Цвета фаз
Каждая фаза в трёхфазной системе имеет свой цвет. Они меняют в зависимости от страны. Используются цвета международного стандарта IEC 60446 (IEC 60445).
Страна | L1 | L2 | L3 | Нейтраль / ноль | Земля
/ защитное заземление |
---|---|---|---|---|---|
Россия, Белоруссия, Украина, Казахстан (до 2009), Китай | Жёлтый | Зелёный | Красный | Голубой | Жёлто/зелёный (в полоску) |
Европейский союз и все страны которые используют европейский стандарт CENELEC с апреля 2004 (IEC 60446), Гонконг с июля 2007, Сингапур с марта 2009, Украина, Казахстан с 2009, Аргентина | Коричневый | Чёрный | Серый | Голубой | Жёлто/зелёный (в полоску) |
Европейский союз до апреля 2004 | Красный | Жёлтый | Голубой | Чёрный | Жёлто/зелёный (в полоску)
(зелёный в установках до 1970) |
Индия, Пакистан, Великобритания до апреля 2006, Гонконг до апреля 2009, ЮАР, Малайзия, Сингапур до февраля 2011 | Красный | Жёлтый | Голубой | Чёрный | Жёлто/зелёный (в полоску)
(зелёный в установках до 1970) |
Австралия и Новая Зеландия | Красный (или коричневый) | Белый (или чёрный)
(ранее — жёлтый) |
Тёмно синий (или серый) | Чёрный (или голубой) | Жёлто/зелёный (в полоску)
(зелёный в очень старых установках) |
Канада (обязательный) | Красный | Чёрный | Голубой | Белый или серый | Зелёный или цвета меди |
Канада (в изолированных трехфазных установках) | Оранжевый | Коричневый | Жёлтый | Белый | Зелёный |
США (альтернативная практика) | Коричневый | Оранжевый (в системе треугольник), или
фиолетовый (в системе звезда) |
Жёлтый | Серый или белый | Зелёный |
США (распространённая практика) | Чёрный | Красный | Голубой | Белый или серый | Зелёный, жёлто/зелёный (в полоску), или провод цвета меди |
Норвегия | Чёрный | Белый/серый | Коричневый | Голубой | Жёлто/зелёный (в полоску), в более старых установках может встречаться только жёлтый или цвета меди |
Отличия
Специфика ЛН — это показатель, по которому производится расчёт токов и остальных величин трёхфазной цепи. Подобная схема позволяет подключать одно- и трёхфазные контакты. Номинальное равно 380В и меняется при изменениях в ограниченной сети, к примеру, вследствие скачков.
Популярнейшей является цепь с нейтралью и заземлением. Подключение в такой системе производится по схеме:
- к фазным проводам подсоединяются однофазные провода;
- к 3-фазным — 3-фазные.
Типы соединений Широта применения ЛН обуславливается его безопасностью и комфортностью разветвления цепи. Оборудование в таком случае подключается к фазному выводу, и лишь он не безопасен.
Расчёт системы несложен, при этом действуют стандартные физические формулы. Параметры ЛН сети замеряются мультиметром, а ФН — спецустройствами, например, вольтметром, датчиком тока, тестером.
Характеристики сети:
- Разводка подобной проводки не нуждается в применении профессионального оборудования. Достаточно отвёрток, которые имеют индикаторы.
- Вероятность удара током очень мала. Подобное объясняется присутствующей в цепи свободной нейтралью. Соединение проводников не требует подключения 0-вого вывода.
- Схема подходит для всех видов тока.
Вам это будет интересно Какое бывает поражение человека электрическим токомВажно! К 3-фазной цепи можно подключить 1-фазную. Наоборот сделать нельзя
Включение в трёхфазную цепь приёмников электрической энергии
- Подобная схема подключения пригодна для многих устройств, которым необходима высокая мощность, чтобы работать. ЛН позволяет увеличить КПД двигателя на33%.
При переключении обмоток генератора к треугольнику со звезды обуславливает увеличение в 1,73 раза величины ЛН.
Соединения в трёхфазных цепях
Важно! Сложность обнаружения повреждений в линейном соединении является немаловажным недостатком цепи, так как вследствие этого может случиться пожар. Отличие между ЛН и ФН состоит в различии соединяемых проводов обмоток
Чтобы проконтролировать параметры ЛН и ФН потребуется импульсный стабилизатор, по-другому — линейный стабилизатор. Этот прибор даёт возможность, сохраняя показатель на одном уровне, приводить в норму напряжение, если оно резко выросло. Прибор можно подключить к контактам электорооборудования, обычной розетке
Отличие между ЛН и ФН состоит в различии соединяемых проводов обмоток. Чтобы проконтролировать параметры ЛН и ФН потребуется импульсный стабилизатор, по-другому — линейный стабилизатор. Этот прибор даёт возможность, сохраняя показатель на одном уровне, приводить в норму напряжение, если оно резко выросло. Прибор можно подключить к контактам электорооборудования, обычной розетке.
Номинальные напряжения
Из выше перечисленного можно сделать такие выводы как – трехфазная сеть имеет два напряжения, а именно фазные и линейные. При соединении звездой линейные напряжения больше фазных, а при соединении треугольником равны. Этот фактор необходимо учитывать при подключении нагрузки, чтоб не произошло аварийных ситуаций и выхода оборудования из строя.
Линейные напряжения тоже сдвинуты друг относительно друга на угол 1200 или 2π/3.
Номинальные напряжения – напряжения, на которые рассчитываются потребители электроэнергии, и которые соответствуют их нормальной работе.
Наиболее распространенными напряжениями в сетях до 1000 В являются 380В, 220В, 127В. 380 В и 220 В наиболее распространены в промышленности, а 220 В и 127 В в бытовых электросетях. Также при четырехпроводной электросети (соединения звезда с нулевым проводом) существует возможность получения фазного напряжения, которые при линейном 380 В будут равны , а при линейном 220 В будут равны . Такое соединение дает плюс в виде возможности при наличии четырехпроводной сети производить подключение как трехфазных потребителей 380 В, так и однофазных с номиналом в 220 В.
В чем главные отличия линейного и фазного напряжения?
Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.
Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока. Поэтому, в электротехнической области, определение фазы имеет двойное толкование.
Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.
Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.
Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для асинхронных двигателей, которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.
Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.