Что такое альтернативная энергетика, ее основные виды и сферы применения
Содержание:
- Важность для коммерческих и промышленных объектов
- Способы передачи энергии
- Ветроэлектрические установки
- Принцип работы катушки с магнитом
- Конструкция
- Действие электрического тока, некоторые факты об электричестве
- Виды систем электроснабжения
- Получение электроэнергии на тепловых электростанциях
- Системы распределения
- Выработка энергии
- Дизельные электростанции
- Солнечная энергия
- Геотермальная энергетика
- Перспективы российской энергетики
- Электрическая мощность
- Заключение
Важность для коммерческих и промышленных объектов
Энергохозяйство – это их неотъемлемая часть. Оно должно рассматриваться как совокупность генерирующих, преобразующих, передающих и потребляющих установок, посредством которого и осуществляется снабжение всем необходимым. При этом выдвигаются такие требования:
- Обеспечение требуемого уровня надежности. Предполагает формирование критериев, которые будут предъявляться. Часто они формулируются в строительных нормах, действующих правилах, руководящих документах и прочих бумагах.
- Обеспечение требуемого качества энергии (или топлива). Это предусмотрено в тех случаях, когда ее показатели оказывают влияние на функционирование потребителей или систем снабжения.
- Удобство, безопасность и простота установки и использования. Это обеспечивается широким набором комплексных установок, а также элементов заводского изготовления. В качестве примера можно привести камеры комплексных устройств, трансформаторных подстанций, конденсаторных установок и тому подобные вещи.
Способы передачи энергии
Способы трансформации энергии невозможно рассматривать без понятия ее передачи. На сегодняшний день выделяется четыре способа взаимодействия тел, при которых происходит передача энергии, – электрический, гравитационный, ядерный и слабый. Передачу в данном контексте можно рассматривать и как способ обмена, поэтому принципиально разделяют совершение работы при передаче энергии и функцию теплообмена. Какие преобразования энергии предусматривают совершение работы? Типичным примером является механическое усилие, при котором в пространстве происходит перемещение макроскопических тел или отдельных частиц тел. Помимо механической силы также выделяют магнитную и электрическую работу. Ключевым объединяющим свойством практически для всех типов работ является способность к полному количественному преобразованию между собой. То есть электричество трансформируется в механическую энергию, механическая работа в магнитный потенциал и т.д. Теплообмен также является распространенным способом передачи энергии. Он может быть ненаправленным или хаотическим, но в любом случае происходит движение микроскопических частиц. Количество активизированных частиц будет определять объем тепла – полезную теплоту.
Ветроэлектрические установки
Ветроэлектрические установки – это установки, предназначенные для выработки электроэнергии за счет ветрового потока. Они могут использоваться в отдаленных и изолированных местах, в различных климатических районах с благоприятными ветровыми условиями, где отсутствует централизованное электроснабжение или его подача нерегулярна. Например, ветроэлектрическая установка может обеспечивать потребителей электроэнергией для питания бытовых приборов, ламп освещения, устройств бытовой и специальной связи, линий теле- и радиокоммуникаций, устройств спутниковой и сотовой связи компьютера, передвижных и стационарных пунктов навигационных и метеорологических постов, радиостанций, маяков и радиомаяков, медицинской и научной аппаратуры, водяных насосов, для обеспечения зарядки аккумуляторов и т. д. В условиях отсутствия ветра электропитание потребителей и их работоспособность обеспечивается аккумуляторной батареей. Подключение инвертора к блоку управления позволяет преобразовать постоянное напряжение 24 В в переменное 220 В.
Рис. 9. Ветроэлектрические установки А класса
Ветроэлектростанция – автономная, надежная, автоматическая установка, не требует дежурного персонала в процессе эксплуатации и предназначена для автономного энергообеспечения индивидуальных потребителей (дачников, садоводов, вахтовиков, охотников, фермеров, рыболовов, геологических экспедиций), а также навигационных, метеорологических, радиорелейных и других постов в обеспечении бесперебойным питанием в полевых условиях.
Рис. 10. Схема ветроэлектрических установок
Принцип работы катушки с магнитом
Протекающий ток через катушку вызывает появление переменного магнитного потока. Он, в свою очередь, оказывает на магниты выталкивающую силу, которая заставляет рамку с двумя разнополярными магнитами крутиться. Таким образом, источники электрической энергии служат узлом для движения авто.
Обратный процесс, когда рамка с магнитом вращается внутри обмоток, за счет кинетической энергии позволяет преобразовывать переменный магнитный поток в ЭДС катушек. Далее в цепи установлены стабилизаторы напряжения, обеспечивающие требуемые показатели питающей сети. По этому принципу вырабатывается электричество в гидроэлектростанциях, теплоэлектростанциях.
ЭДС в цепи появляется и в обычной замкнутой цепи. Она существует до тех пор, пока к проводнику приложена разность потенциалов. Электродвижущая сила нужна для описания характеристики источника энергии. Физическое определение термина звучит так: ЭДС в замкнутой цепи пропорциональна работе сторонних сил, осуществляющих перемещение одиночного положительного заряда через всё тело проводника.
Формула E = I*R — сопротивление учитывается полное, складывающееся из внутреннего сопротивления источника питания и результатов сложения сопротивления питаемого участка цепи.
Конструкция
Конструкция элемента влияет на принцип его работы. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:
Самый простой бытовой аккумулятор включает в себя металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины, на которых накапливаются катоды и аноды.
Аккумулятор
Обычная бытовая батарейка с входящим в её состав сухим элементом имеет металлический корпус, в который помещен стержень-накопитель катодов. Всё прочее пространство заполнено солевым электролитом.
Батарейка
Генератор переменного тока – это устройство, состоящее из трещоток или металлической рамки.
Механический принцип устройства
Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно, конструкция подключена к измерительному прибору, типа амперметра. Источник тепла – это пламя или внешний электрический импульс.
Тепловое устройствоВажно! Подобная конструкция помогает точно понять, как образуется энергия, которая впоследствии преобразуется в ток. Каждый вариант строения обычно заключен в специальный корпус из диэлектрического материала
Действие электрического тока, некоторые факты об электричестве
Как правило, электрический переменный ток, наиболее распространенный в быту, оказывает на человеческий организм негативное влияние. Степень которого зависит от значения такой его характеристики, как сила тока:
- При силе тока от 5 до 7 милиампер наблюдаются судороги в мышцах рук;
- Токи с силой от 8 до 25 милиампер приводят к появлению болевых ощущений, нарушению дыхания;
- Ток с силой 50-80 милиампер вызывает паралич дыхания и нарушение работы сердца;
- Ток с силой свыше 80 милиампер вызывает остановку сердца и паралич дыхания.
- Токи небольшой силы (до 1,5 милиампер) приводят к легкому дрожанию пальцев и не вызывают болевых ощущений.
Простые факты, как вырабатывается электричество
Чтобы добыть электричество из магнита от динамика, на него наматывают два медных провода. И два конца спаивают вместе, к оставшимся подсоединяют небольшую лампочку, светодиодную ленту. Для того, чтобы сделать источник питания для лампы накаливания на 220 В, нужно использовать более мощные и крупные магниты, толстые медные провода большого сечения. Самой древней батарейкой считается найденное при раскопках в Египте устройство, представляющее собой медный сосуд с вставленным в него железным стержнем, не касающимся стенок.
Интересный опыт проводили при дворе короля Людовика. Для того чтобы показать, как вырабатывается и протекает электричество, сделали взаимосвязь с Лейденской банкой и строем солдат. Взявшиеся за руки солдаты при этом образовывали ни что иное, как первую в мире полноценную живую электрическую цепь; Из-за большого количества смертей от даров молний в Италии в XVIII веке во многих европейских странах появилась очень странная мода на шляпки и зонтики с громоотводами; В скандинавских странах главный, порой и единственный, источник электроэнергии – это гидроэлектростанции. Благодаря таким станциям, в этих государствах очень низкий уровень загрязнения атмосферы.
Электричество: как это работает?
Никогда не помешает знать то, как работает привычное нам всем электричество
Во-первых это очень познавательно, а во-вторых ,это немаловажно для не только для расширения кругозора,но и для обеспечения собственной безопасности в современном мире, где достаточно опасная электроэнергия встречается почти на каждом шагу
Виды систем электроснабжения
Каждую СЭС можно классифицировать на три вида:
- элементы распределения, преобразования и передачи электроэнергии (подстанции и электрические сети);
- источники электрической энергии (электростанции);
- бытовые и производственные потребители (электроприёмники).
Опираясь на возможности обеспечения питания от энергетической системы, выполняемые функции, режимы и величины потребления электроэнергии, мощности и правила пользования, всех потребителей.
СЭС можно классифицировать на следующие категории:
- промышленные;
- бытовые;
- производственные и сельскохозяйственные;
- общественные и коммунальные.
Требования к системам электроснабжения:
- Качество.
- Надежность систем электроснабжения.
- Безопасность.
- Удобства эксплуатации.
- Экономичность.
- Гибкость, обеспечивающая возможную модернизацию.
Ведь каждый приёмник электрической энергии предназначается для функционирования при определённых параметрах. Сюда относится: номинальный ток, напряжение, частота и многое другое.
Таким образом, качество поставляемой электроэнергии определяется рядом её особенностей, при соблюдении которых электроприёмники будут работать в нормальном режиме и выполнять своё предназначение.
Для более экономичного резервирования в СЭС учитывают ещё и перегрузочную способность электрического оборудования, возможность осуществления плановых ремонтных работ. Также во время возникновения аварий предусматривается ручная либо же автоматическая разгрузка от тех потребителей, которые неответственны.
Получение электроэнергии на тепловых электростанциях
Данный способ получения электроэнергии является самым распространенным. Так например, в Российской Федерации на долю тепловых источников приходится почти 80 % всей выработки необходимого ресурса. Идут годы, экологи уже практически кричат о негативном воздействии подобных инженерных сооружений на окружающую среду и на здоровье человека, однако станции, возведенные еще в середине прошлого века (а то и дореволюционные) продолжают снабжать населенные города и крупные промышленные предприятия электричеством.
Тепловые источники относятся к традиционным способам получения электроэнергии. И вот уже на протяжении трех или четырех десятков лет занимают лидирующую позицию в рейтинге по объемам выработки. И это несмотря на бурное развитие альтернативных способов получения электроэнергии.
Среди всех инженерных проектов выделяют особый вид сооружений. Это теплоэлектроцентрали, дополнительная функция которых снабжать дома и квартиры граждан теплом. По подсчетам специалистов, эффективность таких электростанций крайне низкая, а передача вырабатываемого ресурса на дальние расстояния сопряжена с большими потерями.
Выработка энергии осуществляется следующим образом. Твердое, жидкое или газообразное топливо сжигается, разогревая воду в котле до значительных температур. Сила пара приводит во вращение лопасти турбины, в результате чего ротор турбогенератора вращается и происходит выработка электроэнергии.
Системы распределения
Сегмент дистрибуции широко признан самой сложной частью смарт-сетки из-за ее повсеместности. Уровни напряжения 132 (110 в некоторых местах) или 66 кВ — это обычные уровни HV, которые можно найти в (европейских) распределительных сетях. Напряжения ниже этого (например, 30, 20, 10 кВ) обычно встречаются в распределительных сетях MV.
Уровни распределения ниже 1 кВ находятся в пределах так называемого LV или Low Voltage .
Топологии сетки MV можно классифицировать по трем группам:
Радиальная топология
Радиальные линии используются для подключения первичных подстанций (ПС) со вторичными подстанциями (СС) и среди них. Эти линии MV или «фидеры» могут использоваться исключительно для одного SS или могут использоваться для достижения нескольких из них. Радиальные системы поддерживают центральный контроль всех SS.
Рисунок 4 — Радиальная подающая система
Кольцевая топология
Это отказоустойчивая топология для преодоления слабости радиальной топологии при отключении одного элемента линии MV, которая прерывает работу электричества (отключение) на остальных подключенных подстанциях. Кольцевая топология является улучшенной эволюцией радиальной топологии, соединяющей подстанции с другими линиями MV для создания избыточности.
Независимо от физической конфигурации сетка работает радиально, но в случае отказа в фидере другие элементы маневрируют, чтобы перенастроить сетку таким образом, чтобы избежать сбоев.
Рисунок 5 — Схема кольцевой шины
Сетевая топология
Сетевая топология состоит из первичных и вторичных подстанций, соединенных через несколько линий MV, чтобы обеспечить множество альтернатив распространения. Таким образом, варианты реконфигурации для преодоления сбоев несколько, и в случае отказа могут быть найдены альтернативные решения для перенаправления электроэнергии.
Системы распределения LV могут быть однофазными или трехфазными. Например, в Европе они обычно представляют собой трехфазные системы 230 В / 400 В (т.е. каждая фаза имеет среднеквадратичное напряжение 230 В, а среднеквадратичное напряжение между двумя фазами составляет 400 В).
В сетях LV представлены более сложные и гетерогенные топологии, чем сетки MV. Точная топология систем LV зависит от расширения и особенностей зоны обслуживания, типа, количества и плотности точек снабжения (нагрузок), специфических для конкретной страны и эксплуатационных процедур, а также ряда вариантов в международных стандартах.
Рисунок 6 — Система распределения сети
SS обычно подает электроэнергию на одну или несколько линий LV с одним или несколькими трансформаторами MV-to-LV на том же участке. Локальная топология LV обычно является радиальной, с несколькими ветвями, которые соединяются с расширенными фидерами, но также есть случаи сетевых сетей и даже кольцевых или двухкорпусных конфигураций в сетях LV.
Линии LV обычно короче линий MV, и их характеристики различаются в зависимости от области обслуживания.
Ссылка // Телекоммуникационные сети для Smart Grid от Alberto Sendin (Покупка твердой обложки из Amazon)
Выработка энергии
Электростанции преобразуют энергию, содержащуюся в топливе (главным образом, уголь, нефть, природный газ, обогащенный уран) или возобновляемые источники энергии (вода, ветер, солнечная энергия) в электрическую энергию.
Обычные современные генераторы производят электричество с частотой, кратной скорости вращения машины. Напряжение обычно не превышает 6-40 кВ. Выходная мощность определяется количеством пара, управляющего турбиной, которая в основном зависит от котла. Напряжение этой мощности определяется током во вращающейся обмотке (т. Е. Ротором) синхронного генератора.
Выход берется из фиксированной обмотки (т. Е. Статора). Напряжение усиливается трансформатором, обычно до гораздо более высокого напряжения. При таком высоком напряжении генератор подключается к сети в подстанции.
Рисунок 2 — паровая турбина и генератор мощностью 472 мегаватт (STG) для электростанции с комбинированным циклом Allen (фото кредит: businesswire.com)
Традиционные электростанции генерируют мощность переменного тока от синхронных генераторов, которые обеспечивают трехфазную электроэнергию, так что источник напряжения представляет собой комбинацию трех источников переменного напряжения, полученных из генератора, с их соответствующими фазовыми напряжениями, разделенными фазовыми углами 120 °.
Ветровые турбины и мини-гидроагрегаты обычно используют асинхронные генераторы, в которых сигнал генерируемого напряжения не обязательно синхронизируется с вращением генератора.
DG относится к поколению, которое подключается к системе распределения, в отличие от обычных централизованных систем выработки электроэнергии.
Исследовательский институт электроэнергетики (EPRI) определил распределенную генерацию как «использование небольших (от 0 до 5 МВт), модульных технологий производства электроэнергии, распределенных по всей системе распределения коммунальных услуг, чтобы уменьшить загрузку T / D или рост нагрузки и тем самым отложить обновление T & D, уменьшают потери системы, улучшают качество и надежность. »
Малые генераторы постоянно совершенствуются с точки зрения затрат и эффективности, становясь ближе к работе крупных электростанций.
Дизельные электростанции
Для работы дизельных электростанций, которые называют ДЭС, используются различные виды жидкого топлива. Основой системы является дизель-генератор, включающий в себя дизельный двигатель, электрический генератор, системы смазки и охлаждения, пульт управления.
Данные установки применяются как альтернативные в отдаленных районах, где являются основными источниками электроэнергии. Как правило, подведение стационарных ЛЭП в такие места экономически не выгодно. Кроме того, дизельные электростанции служат аварийными или резервными источниками питания, когда потребители не должны отключаться от электроснабжения.
Виды дизельных электростанций могут быть стационарными (4-5 тысяч кВт) и мобильными (12-1000 кВт). Благодаря небольшим размерам, они могут размещаться в небольших зданиях и помещениях. Эти станции постоянно готовы к пуску, а сам процесс запуска не занимает много времени. Большинство функций установок автоматизировано, а остальные легко переводятся в автоматический режим. Основным недостатком дизельных станций является привозное горючее и все мероприятия, связанные с его доставкой и хранением.
Солнечная энергия
Солнце — самый важный источник энергии для жизни на Земле.
Солнечная энергия — это лучистая энергия солнца. Он путешествует в пространстве, пока не достигнет Земли в виде электромагнитных волн. Большая часть солнечного излучения, которое достигает атмосферы Земли, — это ультрафиолетовое излучение, видимый свет и инфракрасные лучи.
Солнце состоит из водорода и гелия. В этом случае энергия исходит от процесса ядерного синтеза: ядра водорода объединяются, образуя гелий и лучистую энергию.
Люди научились использовать солнечную энергию. Сегодня энергия солнечного света используется для отопления домов и зданий, увеличения их тепловой энергии. Видимый солнечный свет проходит через стекла окон и поглощается материалами внутри комнаты. Это заставляет материалы нагреваться.
Лучистая энергия Солнца ответственна за существование жизни на Земле. Растения собирают эту энергию для производства пищи, превращая ее в химическую энергию. Солнечная энергия управляет движением воздуха в атмосфере, вызывая ветры.
Геотермальная энергетика
Освоение геотермальных источников ознаменовало новую веху в истории развития альтернативных способов получения электроэнергии.
Принцип выработки электроэнергии заключается в поступлении кинетической и потенциальной энергии пара горячей воды подземного источника в лопасти турбины генератора, которая посредством вращательных движений производит ток. В теории разница температур на поверхности и в глубине земной коры характерна для любого участка. Однако она, как правило, минимальна, и использовать ее в целях получения электроэнергии не представляется возможным. Возведение таких станций оправдано лишь в определенных районах нашей планеты (сейсмически активных). Первопроходцем в освоении этого способа является Исландия. Земли русской Камчатки также могут использоваться в этих целях.
Принцип получения энергии заключается в следующем. Горячая вода из недр земли поступает на поверхность. Давление здесь значительно ниже, что приводит к закипанию воды. Отделяющийся пар направляется по трубопроводу и вращает лопасти турбин генератора. Трудно дать прогноз на будущее по этому современному способу получения электроэнергии. Возможно такие станции начнут массово строиться на территории Российской Федерации, а возможно эта идея со временем затухнет и о ней никто и не вспомнит.
Перспективы российской энергетики
Будущее отечественной энергетики преимущественно связывается с развитием традиционных способов преобразования природных ресурсов. Ключевое место в отрасли должна будет занять ядерная энергетика, но в комбинированном варианте. Инфраструктуру атомных станций должны будут дополнять элементы гидротехники и средства переработки экологически чистого биотоплива. Не последнее место в возможных перспективах развития отводится и солнечным батареям. В России и сегодня этот сегмент предлагает немало привлекательных идей – в частности, панели, которые могут работать даже в зимнее время. Аккумуляторы преобразуют энергию света как такового даже без тепловой нагрузки.
Электрическая мощность
Электрические батареи превращают химическую энергию в электрическую.
Электричество — это тип энергии, который зависит от притяжения или отталкивания электрических зарядов. Существует два вида электричества: статическое и текущее. Статическое электричество связано с наличием статических нагрузок, т.е. нагрузок, которые не двигаются. Электрический ток происходит из-за перемещение грузов.
Пример статического электричества — когда мы натираем воздушный шарик на волосы. Воздушный шар удерживает электроны от волос, заряжаясь отрицательно, в то время как волосы заряжены положительно. Если вы подойдете к воздушному шарику к своей голове, не касаясь его, вы увидите, как пряди волос тянутся к воздушному шарику.
Электрический ток — это поток зарядов из-за движения свободных электронов в проводнике. Это движение происходит в электрическом поле, то есть в области вокруг заряда, где действует сила. Электрические заряды легко переносятся такими материалами, как металлы, особенно серебро, медь и алюминий.
В батареях или электрических батареях происходит превращение химической энергии в электрическую энергию. Химическая энергия происходит в результате реакции между электродами и электролитом, когда положительный полюс соединен с отрицательным полюсом батареи. Вольт — это единица измерения потенциальной энергии на заряд в батарее.
Заключение
Переход энергии из одной формы в другую является нормальным, а в некоторых отраслях обязательным условием производственного энергетического процесса. В разных случаях необходимость включения этого этапа может объясняться экономическими, технологическими, экологическими и другими факторами генерации ресурса. При этом, несмотря на разнообразие естественных и искусственно организующихся способов трансформации энергии, подавляющее большинство установок, обеспечивающих процессы преобразования, применяются только для электричества, теплоты и механической работы. Средства для преобразования электрической энергии и вовсе являются самыми распространенными. Электрические машины, обеспечивающие трансформацию механической работы в электроэнергию по принципу индукции, к примеру, используются практически во всех сферах, где задействуют сложные технические устройства, агрегаты и приборы. И эта тенденция не снижается, так как человечество нуждается в постоянном увеличении объемов энергетического производства, что заставляет искать новые источники первичной энергии. На данный момент наиболее перспективными направлениями в энергетике считаются системы генерации того же электричества из механической энергии, производимой Солнцем, ветром и потоками воды в естественной природе.