Как рассчитать сопротивление провода
Содержание:
- Сопротивление изоляции кабеля
- Почему возникает несоответствие?
- Что такое сопротивление провода изоляции
- Влияние рабочих параметров на расчет
- Использование готовых таблиц
- Что такое мультиметр
- Индуктивное сопротивление проводов и кабелей
- Основы сортировки
- Зависимость тока, мощности и сечения жил
- Что такое мультиметр
- Принцип работы
- Что нам нужно знать?
- Как замерить сопротивление изоляции мегаомметром ЭСО
- Индуктивное сопротивление
- Как измерять сопротивление мультиметром – итоги
Сопротивление изоляции кабеля
Для нахождения R изоляции кабеля нужно исходить из его вида. Есть следующие разновидности:
- 1000 В и больше — высоковольтные.
- Ниже 1000 В — низковольтные.
- Контрольные электрокабели — защитные цепи, вторичные цепи РУ (реле указательных), цепи питания электроприводов и так далее.
Для измерения R изоляции необходимо специализированное устройство. Высоковольтные и низковольтные определяются при напряжении 2500 В, когда контрольные — от 500 до 2500 В. Если используется высоковольтный со значением больше 1000 В, то его R изоляции должно быть не меньше 10 МОм. Если используется низковольтный со значением меньше 1000 В, то его R изоляции должно быть не меньше 0,5 Мом. У контрольных кабелей R изоляции должно быть не меньше 1 МОм.
Почему возникает несоответствие?
Несмотря на то, что в условиях современной конкуренции производители всеми силами стремятся не упустить своих клиентов, некоторые из них берутся за надувательство. Для этого они экономят металл за счет уменьшения диаметра. Достаточно убрать всего лишь пару квадратных миллиметров, и на сотнях километров кабеля это окупиться значительным снижением себестоимости.
А потом и покупателю цену снизят, и сами останутся довольными. Но вот потребитель, в конечном итоге, подводит себя под угрозу из-за того, что сопротивление проводника гораздо ниже заявленного. И в месте прокладки такого провода возникает вероятность возгорания.
Что такое сопротивление провода изоляции
Сопротивление изоляции — это один из важнейших параметров любых кабелей и проводников. Основано это на том, что все провода в процессе их эксплуатации подвергаются сторонним воздействиям. Помимо внешнего влияния присутствуют также и внутренние: влияние жил одного провода друг на друга, взаимодействие по электромагнитным полям. Все это, так или иначе, приводит к появлению утечек.
Промышленный мегомметр для замера крупных значений сопротивления
Именно поэтому любые электрические и неэлектрические провода создаются с изоляцией, защищающей проводник от внешнего влияния. Среди популярных изоляционных материалов выделяют резину, поливинилхлорид, масло, дерево и бумагу. Используются эти материалы исходя из самого предназначения кабеля. Например, провода, прокладываемые под землей, изолированы сравнительно толстой лентой диэлектрика, а кабеля телекоммуникаций могут быть заключены в простую обертку из алюминиевой фольги.
Старый советский аналоговый стендовый омметр
Важно! Изоляция — это защита жил от воздействия потусторонних факторов, защита жилок друг от друга, от замыкания и от различных утечек. Сопротивление же изоляции это величина сопротивления между жилами провода или между одной из жил и изоляционным слоем
Любой материал со временем эксплуатации стареет и разрушается, что ведет к ухудшению его характеристик и снижению сопротивления изоляции постоянному или переменному току. Характеристика сопротивляемости изоляции указывается на кабеле и нормируется в его ГОСТе. Определяют его в лабораторных условиях при при температуре в 20 градусов.
Произведение измерений сопротивляемости профессиональным мегаомметром
Низкочастотные кабели связи имеют минимальное сопротивление изоляции в 5 Гигаом на километр, а коаксиальные в свою очередь — 10 Гигаом на километр. Измерение и проверку сопротивляемости проводят на регулярной основе мегаомметром: на установках мобильной связи — один раз в 6 месяцев, на объектах повышенной опасности — один раз в 12 месяцев, на других объектах — один раз в три года.
Резистор для повышения сопротивляемости электрической сети
Влияние рабочих параметров на расчет
Чтобы определить, какой толщины должен быть кабель для прокладывания функциональной и безопасной проводки, можно ориентироваться на основные рабочие показатели электрической сети (напряжение, сила тока, потребляемая мощность). Однако каждый из этих способов имеет небольшие особенности, которые необходимо учитывать. Рассмотрим их по отдельности.
Напряжение
При расчете сечения кабеля по напряжению ключевое значение имеет тип сети по количеству фаз. Как мы знаем, стандартная бытовая сеть имеет 1 силовую фазу с напряжением 220 вольт, а в производственной деятельности и на высоконагруженных объектах применяется трехфазная сеть – с напряжением 380 вольт. Отличается и строение силового кабеля:
- в однофазном – 3 жилы: фаза, ноль, заземление;
- в трехфазном – 5 жил: 3 фазы, ноль, заземление.
Это накладывает определенные особенности на монтаж электросети, связанные с разводкой питания на автоматы и выделенные линии. К примеру, от силового щитка частного дома идет одна ветка для освещения и подачи электроэнергии в гараж, потребляемая мощность которого составляет 18 киловатт. И именно здесь возникает различие:
- В однофазной сети кабель будет принимать на себя всю нагрузку ветви, равную 18 кВт. То есть при использовании медного провода его сечение должно быть равно 16 или 25 мм2 (для скрытой и отрытой проводки).
- В трехфазной сети кабель будет состоять из трех питающих жил, каждая их которых будет находиться под нагрузкой в 6,6 кВт. То есть площадь сечения каждой из них может составлять 1 мм2, а суммарная – 3мм2.
Например, мы прокладываем электрическую сеть в квартире, подключенной к однофазной сети с напряжением 220В. Для питания электроплиты с номинальной мощностью в 5 кВт от распределительного щитка будет проведена отдельная ветка с автоматикой. Согласно таблице для этого нужно использовать медный кабель с площадью сечения в 2,5 мм2. Алюминиевые провода для питания таких устройств лучше не использовать совсем – их свойства могут изменить в худшую сторону под воздействием сильной нагрузки.
Сила тока
Чтобы узнать, какие провода подойдут для использования на определенном участке цепи, можно провести расчеты по силе тока. Некоторые электрики в данной ситуации производят примерный расчет, считая, что на один квадратный миллиметр сечения должно приходиться 10А тока, однако такой способ не слишком точен, поскольку подходит только для однофазных сетей и кабелей с площадью сечения до 6 мм2. Поэтому мы рассмотрим, как правильно и точно выбрать кабель исходя из величины номинального тока.
Чаще всего на корпусе электроприборов или в технической документации указывается их номинальная мощность, с помощью которой мы можем вычислить мощность и, следовательно, нагрузку. Сложив токовые нагрузки всех электроприборов, получим суммарную мощность. Исходя из этой величины, надо будет выбирать провод. Например, в участок сети включены две ламы мощностью по 100Вт и четыре – по 40Вт, а также 1200Вт микроволновка и 2200Вт электрический чайник. Суммарная мощность нагрузки в такой цепи составит 3760Вт или 3,76 кВт. Для расчета сечения кабеля понадобится стандартная формула нахождения силы тока.
I= P/U
P – сопротивление (общая мощность); U – напряжение сети; I – сила тока
I= 3760Вт/220В= 17,09 А
Токовая нагрузка на нашем участке сети составляет 17,09А. В выборе подходящего кабеля нам поможет таблица нагрузок, использовавшаяся в способах выше. Обращаемся к ней и видим, что в однофазной сети с напряжением в 220В можно использовать медный кабель с сечением 1,5 мм2 или алюминиевый с сечением 2,5 мм2. Для сети с напряжением 380В эти показатели аналогичны – существенная разница в требуемой толщине кабелей между трех- и двухфазными сетями становится заметной только при нагрузке выше 25А.
Не забывайте, что выбор проводников по длительно допустимому току необходимо производить с округлением в большую сторону. Если, например, суммарная нагрузка составляет 22,5 А, следует брать кабель с сечением не ниже этого значения. Согласно таблице это будет 2,5 мм2 для медных проводов и 4 мм2 – для алюминиевых. Такое соотношение закономерно для двух этих материалов, так как медь обладает более высокой пропускной способностью.
Использование готовых таблиц
Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам — длина кабеля в 1000 м и величина тока в 1 А.
В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.
Таблица 1. Определение потерь напряжения по длине кабеля
Площадь сечения, мм2 | Линия с одной фазой | Линия с тремя фазами | |||||
---|---|---|---|---|---|---|---|
Питание | Освещение | Питание | Освещение | ||||
Режим | Пуск | Режим | Пуск | ||||
Медь | Алюминий | Косинус фазового угла = 0,8 | Косинус фазового угла = 0,35 | Косинус фазового угла = 1 | Косинус фазового угла = 0,8 | Косинус фазового угла = 0,35 | Косинус фазового угла = 1 |
1,5 | 24,0 | 10,6 | 30,0 | 20,0 | 9,4 | 25,0 | |
2,5 | 14,4 | 6,4 | 18,0 | 12,0 | 5,7 | 15,0 | |
4,0 | 9,1 | 4,1 | 11,2 | 8,0 | 3,6 | 9,5 | |
6,0 | 10,0 | 6,1 | 2,9 | 7,5 | 5,3 | 2,5 | 6,2 |
10,0 | 16,0 | 3,7 | 1,7 | 4,5 | 3,2 | 1,5 | 3,6 |
16,0 | 25,0 | 2,36 | 1,15 | 2,8 | 2,05 | 1,0 | 2,4 |
25,0 | 35,0 | 1,5 | 0,75 | 1,8 | 1,3 | 0,65 | 1,5 |
35,0 | 50,0 | 1,15 | 0,6 | 1,29 | 1,0 | 0,52 | 1,1 |
50,0 | 70,0 | 0,86 | 0,47 | 0,95 | 0,75 | 0,41 | 0,77 |
Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.
Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:
∆U = 1 В*0,05 км*100А = 5 В
Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.
На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме — 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда
∆U при запуске = 0,52*0,05*500 = 13 В
∆U щита = 10*1400/100 = 14 В
∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % — допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.
Что такое мультиметр
Мультиметр или мультитестер — это компактный, эргономичный и многофункциональный прибор для проведения замера основных параметров электрической сети в любых целях. Все мультиметры позволяют с определенной точностью производить измерения силы тока, напряжения, сопротивления и даже температуры с помощью своих щупов.
Мультиметры бывают двух видов:
- Аналоговые, которые выводят результаты измерений с помощью механических инструментов отображения: стрелок, столбиков и цены делений, показывающей количественную характеристику измеряемой величины;
- Цифровые. Наиболее часто используемые типы приборов, вывод информации у которых производится через встроенный дисплей, а все данные рассчитываются в цифровом виде.
Индуктивное сопротивление проводов и кабелей
Для определения индуктивного сопротивления (обозначается Х) кабельной или воздушной линии определенной протяженности в километрах удобно пользоваться выражением:
Где: Х – индуктивное сопротивление одного километра провода или кабеля на фазу, Ом/км.
Х одного километра воздушной или кабельной линии можно определить по формуле:
Где: Dср – расстояние среднее между проводами или центрами жил кабелей, мм; d – диаметр токоведущей жилы кабеля или диаметр провода, мм; μт – относительная магнитная проницаемость материала провода;
Первый член правой части уравнения обусловлен внешним магнитным полем и называется внешним индуктивным сопротивлением Х. Из этого выражения видно, что Х зависит только от расстояния между проводами и их диаметра, а так как расстояние между проводами выбирается исходя из номинального напряжения линии, соответственно Х будет расти с ростом номинального напряжения линии. Х воздушных линий больше, чем кабельных. Это связано с тем, что токоведущие жилы кабеля располагаются друг к другу значительно ближе, чем провода воздушных линий.
Для одной фазы:
Где: D1:2 расстояние между проводами.
Для одинарной трехфазной линии при расположении проводов по треугольнику:
При горизонтальном или вертикальном расположении проводов трехфазной линии в одной плоскости:
Увеличение сечения проводов линии ведет к незначительному уменьшению Х.
Второй член уравнения для определения X обусловлен магнитным полем внутри проводника. Он выражает внутреннее индуктивное сопротивление Х//.
Таким образом выражение для Х можно представить в виде:
Для линий из немагнитными материалов μ = 1 внутреннее индуктивное сопротивление Х// по сравнению с внешним Х составляет ничтожную величину, поэтому им очень часто пренебрегают.
В таком случае формула для определения Х примет вид:
Для практических расчетов индуктивные сопротивления кабелей и проводов определяют по соответствующим таблицам.
В случае приближенных расчетов можно считать для воздушных линий напряжением 6-10 кВ Х = 0,3 – 0,4 Ом/км, а для кабельных Х = 0,08 Ом/км.
Внутренне индуктивное сопротивление стальных проводов сильно отличается от Х// проводов из цветных металлов. Это вызвано тем, что Х// пропорционально магнитной проницаемости μr, которая сильно зависит от величины тока в проводе. Если для проводов из цветных металлов μr = 1, то для стальных проводов μr может достигать величины в 103 и даже выше.
Х// для линий прокладываемых стальными проводами пренебрегать нельзя. Как правило, данную величину берут из таблиц, составленных на основе экспериментальных данных.
Сопротивления r и Х// при некоторых значениях тока могут достигать максимальных значений, а затем с увеличением тока уменьшатся. Это явление объясняется магнитным насыщением стали.
Основы сортировки
Единственный способ качественно подобрать в квартиру или дом провод по сечению токоведущей жилы – знать какой мощности к нему будут подключаться приборы. Еще такой метод называют «по нагрузке», так как в электрических схемах все подключенные приборы рассматриваются как нагрузка или сопротивление.
Сначала необходимо определить мощность приборов. Это можно сделать несколькими способами:
- найти в техническом паспорте устройства информацию о ней;
- мощность указывается на самих приборах – обычно ее указывают на пластинах или стикерах из металла, хотя могут и просто нанести маркировку на корпус.
- замерить силу тока при работе и высчитать мощность – экзотический способ, который применяется в исключительных случаях, когда нужны точные результаты.
Если прибор сделан в России, Украине или Беларуси мощность на нем всегда указывается как Вт (ватт) или кВт (киловатт). Если изделие европейского, азиатского или американского производства, буквой – W. Используемая нагрузка на таких устройствах обозначают как “ТОТ” или “ТОТ МАХ”.
Если не удалось точно установить мощность прибора, можно взять для расчета среднестатистические данные.
При этом следует помнить, что параметры в них указаны в большом диапазоне, а это значит, что выбранный по меньшему значению кабель может не соответствовать требованиям.
Это значит, что в таком случае надо учитывать максимально возможную мощность приборов и подобрать для них соответствующие сечения кабелей по потребляемой мощности. В противном случае кабель может перегреваться в процессе эксплуатации, вплоть до возгорания изоляции.
Зависимость тока, мощности и сечения жил
Измерить и произвести расчеты площади сечения кабеля по диаметру жилы недостаточно. Перед прокладкой проводки или иных типов электросетей необходимо также знать пропускную способность кабельной продукции.
- Выбирая кабель, необходимо руководствоваться несколькими критериями:
- сила электротока, которую будет пропускать кабель;
- мощность потребителей;
- токовая нагрузка, оказываемая на кабель.
Мощность
Самым важным параметром при электромонтажных работах (в частности прокладке кабелей) является пропускная мощность. От сечения проводника зависит максимальная мощность передаваемой по нему электроэнергии
Поэтому крайне важно знать общую мощность источников потребления энергии, которые будут подключены к проводу
Обычно производители бытовой техники, приборов и иных электротехнических изделий указывают на этикетке и в прилагаемой к ним документации максимальную и среднюю мощность потребления.
Например, машина для стирки белья может потреблять электроэнергию в диапазоне от десятков Вт/ч при режиме полоскания до 2,7 кВт/ч при нагреве воды.
Соответственно, к ней должен подключаться провод с тем сечением, которого хватит для передачи электроэнергии максимальной мощности. Если к кабелю подключается два и более потребителя, то общая мощность определяется путем сложения предельных значений каждого из них.
Усредненная мощность всех электроприборов и осветительных устройств в квартире редко превышает 7500 Вт для однофазной сети. Соответственно, сечения кабелей в электропроводке необходимо подбирать под это значение.
Рекомендуется округлять сечение в сторону увеличения мощности из-за возможного увеличения потребляемой электроэнергии в будущем. Обычно берут следующую по числу площадь сечения от рассчитанной величины. Так, для значения общей мощности 7,5 кВт необходимо использовать медный кабель с сечением жилы 4 мм2, который способен пропустить около 8,3 кВт. Сечение проводника с алюминиевой жилой в таком случае должно быть не менее 6 мм2, пропускающее мощность тока от 7,9 кВт.
В индивидуальных жилых постройках нередко применяется трехфазная система электроснабжения на 380 В. Однако большая часть техники не рассчитана на такое электронапряжение. Напряжение в 220 В создается посредством их подсоединения в сеть через нулевой кабель с равномерным распределением токовой нагрузки на все фазы.
Электроток
Зачастую мощность электрооборудования и техники может быть не известна владельцу из-за отсутствия этой характеристики в документации или полностью утерянных документов, этикеток. Выход в такой ситуации один – произвести расчет по формуле самостоятельно.
Мощность определяется по формуле:
P = U*I
- где:
- Р – мощность, измеряемая в ваттах (Вт);
- I – сила электротока, измеряемая в амперах (А);
- U – приложенное электронапряжение, измеряемое в вольтах (В).
- Когда неизвестна сила электротока, то ее можно измерить контрольно-измерительными приборами:
- амперметром;
- мультиметром;
- токоизмерительными клещами.
После определения потребляемой мощности и силы электротока можно посредством нижеприведенной таблицы узнать необходимое сечение кабеля.
Нагрузка
Расчет сечения кабельных изделий по токовой нагрузке необходимо производить для дальнейшей защиты их от перегрева. Когда по проводникам проходит слишком большой электроток для их сечения, то может происходить разрушение и оплавление изоляционного слоя.
Предельно допустимая длительная токовая нагрузка – это количественное значение электротока, который сможет пропускать кабель достаточно долго без перегревов. Для определения этого показателя изначально необходимо просуммировать мощности всех энергопотребителей.
После этого произвести вычисления токовой нагрузки по формулам:
однофазная сеть: I = P∑*Ki/U
трехфазная сеть: I = P∑*Ki/(√3*U)
- где:
- P∑ – общая мощность энергопотребителей;
- Ki – коэффициент, равный 0,75;
- U – электронапряжение в сети.
Что такое мультиметр
Мультиметр или мультитестер — это компактный, эргономичный и многофункциональный прибор для проведения замера основных параметров электрической сети в любых целях. Все мультиметры позволяют с определенной точностью производить измерения силы тока, напряжения, сопротивления и даже температуры с помощью своих щупов.
Внешний вид типичного цифрового мультиметра из диэлектрического пластика
Мультиметры бывают двух видов:
- Аналоговые, которые выводят результаты измерений с помощью механических инструментов отображения: стрелок, столбиков и цены делений, показывающей количественную характеристику измеряемой величины;
- Цифровые. Наиболее часто используемые типы приборов, вывод информации у которых производится через встроенный дисплей, а все данные рассчитываются в цифровом виде.
Мегаомметр GM3123 для использования в промышленных сетях высокого напряжения
Принцип работы
Работа любого омметра (включая и современные цифровые измерители) базируется на основном постулате электротехники – законе Ома. Согласно его условиям, чем больше сопротивление, тем меньше проходящий через него ток – при неизменном напряжении питания.
Омметру для работы необходим источник питания. Образуется запитанная электрическая цепь, в которой прибор, учитывая напряжение питания и ток, протекающий через замеряемый элемент, определяет сопротивление.
В Китае можно заказать никель-кадмиевую аккумуляторную батарейку на 8,4 В – 7 перезаряжаемых элементов по 1,2 В, упакованных в корпус такого же размера, ёмкостью до 200 миллиампер-часов – она даст близкое к 9 В питание, отчего прибор не выдаст существенную погрешность.
Такой способ – выход для тех, кто часто по работе замеряет сопротивление резисторов, спиралей и обмоток, «прозванивает» кабельные линии и т. д.: после примерно 1000 замеров обычная батарейка «села» бы.
Что нам нужно знать?
Всем известно, что кабельная проводка передает электроэнергию от источника – линии электропередачи – к конечному потребителю – жилым, административным зданиям, строительным объектам и т.п.
При движении тока по металлическому проводу часть энергии теряется в нем из-за сопротивления току самого металла.
Поэтому потребителю достается не та часть электричества, которая отошла от источника, а несколько меньшая с учетом потерь при движении тока.
Для обеспечения оптимального распределения нагрузки и стабильности напряжения провод для электрической сети необходимо выбирать определенного размера – сечения, которое определяет диаметр провода.
Падение напряжения будет также зависеть от длины проводника.
Расчетная величина падения не должна сильно отклоняться от исходного нормативного значения.
При увеличении подключаемой нагрузки также возрастают препятствия для прохождения тока.
Кроме того, при небольшой силе тока увеличивается сопротивление проводника, поэтому происходит падение напряжения, ведь все мы из школы помним математическую зависимость:
I = U / R.
Поэтому, если взять два разных по длине проводника одинакового сечения, то потери выше у более длинного из них.
Следовательно, при прокладке токоведущего кабеля для ЛЭП или других электрических установок основным критерием наряду с сечением проводника выступает его длина.
А можно ли рассчитать эту величину в обычных бытовых условиях, используя подручные средства?
Разумеется, определить снижение напряжения мы сможем тремя способами:
-
Используя два вольтметра, производим замер этой величины в на концах кабеля.
- Измеряем напряжение последовательно на разных участках провода. При этом методе показания могут быть не объективными, т.к. возможно изменение нагрузки или условий работы сети.
- Подключаем один электроприбор параллельно замеряемому кабелю. Здесь также возможны погрешности, потому что длинные соединительные провода способны влиять на искомую характеристику.
Как замерить сопротивление изоляции мегаомметром ЭСО
Первым делом необходимо правильно подключить измерительные провода к самому устройству. На данном этапе могут возникнуть вопросы. Это происходит из за того, что на панели подключения есть четыре отверстия (хотя встречается и три). Рассмотрим их подробнее слева-направо:
- “Минус” – сюда одинарный конец измерительного провода
- “Rx” – сюда второй конец двойного провода
- Данное отверстие в описываемой модели мной не опознано. Однако в ЭСО210/2 сюда перебрасывается провод с Rx при измерениях на пределе 0-5 МОм (отверстие подписано 0,1Rx).
- “Э” – экран; сюда вставляется штырь двойного провода. А нужен он для устранения влияния тока утечки на измерения. Используется при измерении между фазами.
Подача напряжения осуществляется при нажатии кнопки “сеть”. Провод питания подключается в нижней части прибора. Напряжение питания составляет 220В. Берем от розетки или, если она далеко, от удлинителя. Порой кроме компактного мегаомметра надо брать с собой на объект и удлинитель. Хотя, можно и одолжить у местных.
Перед началом измерений надо проверить исправность измерительных проводов, необходимо проверить их целостность. Для этого надо подключить провода и далее:
- При соединенных проводах сопротивление изоляции должно быть равно нулю
- При разведенных проводах значение Rx должно быть максимально возможным (говорим, бесконечность – сопротивление воздуха бесконечно, проводимость равна нулю)
- Если бесконечность при замкнутых, значит провод обломан и надо его заменить
- Если ноль при разведенных, значит либо они касаются, либо внутри прибора пробой или другая неисправность (не встречал такую ситуацию)
Лично я испытывал следующее оборудование мегаомметром: кабель (жилы, оболочка), турбогенератор (статор, ротор, подстуловая, патрубков), трансформатор, шины, электродвигатель, релейные цепи, трансформаторы тока и напряжения.
Таблица пределов измерения мегаомметров ЭСО
Разные модели мегаомметров ЭСО отличаются:
- регулируемыми пределами измерений (разные шкалы для разных величин измеряемого сопротивления изоляции )
- подаваемым напряжением постоянного тока (100, 250, 500, 1000, 2500 В)
- а также способом подачи напряжения (либо просто нажатие кнопки, либо вращение ручки генератора со скоростью 120-144 об/мин, о чем говорит наличие буквы Г в названии модели, ну и ручки собственно).
Характеристики мегаомметров ЭСО210
Основными элементами прибора являются: генератор или трансформатор, преобразователь и электронный измеритель. Электронный измеритель в моделях ЭСО210/1(Г) и ЭСО210/3(Г) выполнен на двух логарифмических усилителях. А в моделях ЭСО210/2(Г) – на двух логарифмических усилителях и повторителе напряжения на операционном усилителе – но эта информация, скорее всего, мало кому пригодится.
Также стоит отметить, что при использовании прибора рекомендуется использовать прерывистый характер работы – одну минуту измерение, две минуты перерыв.
Класс точности прибора 2,5, относительная погрешность 15% от измерененного сопротивления изоляции. То есть намерили 100МОм, а на самом деле это будет сто плюс минус пятнадцать мегаомм. Но и это не точно, так как существуют и другие влияющие факторы – это подробно описано в руководстве мегаомметра по экспуатации…
Как не запутаться в шкалах стрелочного мегаомметра ЭСО210
При работе с данным прибором чаще всего путаются какие концы куда вставлять, а также не сразу ориентируются на какую шкалу смотреть. Но с опытом глаз наметывается и трудностей не возникает.
У первой шкалы нуль справа, у второй и второй умножить на десять нули слева. Не путайте никогда. Нижняя черная шкала, как легко догадаться используется при измерении напряжения, и судя по надписи – как постоянного, так и переменного.
Возможно неопытного юнца испугает логарифмическая шкала, но бояться не стоит. Главное не торопиться и перепроверить несколько раз перед записью в протокол.
Например, первая шкала идет справа налево
… 0,1-0,2-0,3-0,4-0,5-0,6-0,7-0,8-0,9 …
1
… 2-3-4-5-6-7-8-9 …
10
… 20-30-40 …
50
К этому привыкаешь) На второй шкале максимум десять в четвертой – это 10 000 МОм или же 10 ГОм.
50
… 60-70-80-90 …
100
… 200-300-400-500-600-700-800-900 …
1000 (1к)
… 2к-3к-4к-5к-6к-7к-8к-9к …
10000 (10к)
А на “второй умножить на десять” – 100 000 МОм или 100 ГОм.
Некоторые пишут, но никогда не говорят, не ЭСО, а ЭС0. Расшифровки на просторах интернета я не нашел, но кажется мне, что правильно писать букву о, а не ноль. Если вдруг знаете аргументированный ответ как правильно, отпишитесь на почту.
Последние статьи
Самое популярное
Индуктивное сопротивление
Созданное в ходе передачи энергии переменное магнитное поле становится источником реактивного сопротивления подобного вида. Индуктивный вариант в основном зависит от характеристик проходящего тока, диаметра и расстояния между проводами.
Само сопротивление обычно классифицируют следующим образом:
- зависящее от параметров тока и материала — внутреннее;
- обусловленное геометрическими особенностями линии — внешнее. В этом случае данный показатель будет постоянной величиной, не зависящей от каких-либо других факторов.
Заводы по производству кабельной продукции всегда указывают в своих каталогах информацию об индуктивном сопротивлении.
Данный параметр обычно определяется следующим выражением:
в котором индуктивный показатель для 1 км провода – , а L – протяженность.
Х километрового участка рассчитывается по следующей формуле:
Где: Dср – расстояние среднее по центральной оси имеющихся проводов, мм; d – диаметр рабочего токопроводника, мм; μт –относительная магнитная проницаемость.
Как измерять сопротивление мультиметром – итоги
Управление современных цифровых мультиметров, да и большинство аналоговых, сделано максимально удобным для оператора и не требует глубоких познаний. Оно интуитивно понятно даже непрофессионалу без профильного образования – зачастую для освоения и правильного использования прибора достаточно вспомнить школьные уроки физики по построению и проверке электроцепей. Желательно при проведении измерений помнить про перечисленные выше нюансы, ведь они в любом случае «вылезут» в процессе использования мультиметра.
Сопротивлением называют характеристику проводника, описывающую его способность препятствовать прохождению электрического тока. Она увеличивается с повышением силы и/или понижением напряжения тока, идущего по проводу. Другими словами, чем ниже сопротивление проводника, тем выше напряжение тока, который он способен пропускать. Поэтому сопротивление провода — важная характеристика.
Если сопротивление слишком высокое, произойдет перегрев металла, снизится напряжение тока. В реальных условиях подобные случаи приводят к пожару. Поэтому для изготовления проводников используют материалы, которые обладают одними из самых низких показателей — медь и алюминий. Лучше проводят электричество только серебро и золото. Но проводов из них не производят по понятным причинам.
Существует масса стандартов, которые не позволят производителю создавать продукцию, опасную для использования с переменным током 220 В/50 Гц. Поэтому можно не беспокоиться о том, подойдет ли купленный товар для применения. Необходимо знать, как проверить сопротивление, чтобы определить, есть ли разрывы на линии. При их наличии показатель повышается. Кроме этого, данная характеристика позволяет узнать о работоспособности трансформаторов, предохранителей, ТЭНов, плат — тех устройств, о состоянии которых нужно знать заранее, где недопустимо правило «Проверю во время работы агрегата».