Площадь
Содержание:
- Как рассчитать площадь комнаты – пошаговая инструкция
- Как посчитать площадь комнаты: методика расчета по полу
- Площадь прямоугольника
- Площадь квадрата
- Немного теории
- Калькулятор для неправильной фигуры
- Как высчитать метр квадратный: единицы изменения
- Поверхность круга
- Что такое площадь
- Определение понятия площади
- Заключение
Как рассчитать площадь комнаты – пошаговая инструкция
При расчете площади нужно знать длину, ширину и высоту комнаты
Можно, конечно, заглянуть в техническую документацию дома и посмотреть в ней все нужные характеристики. Но, во-первых, там нередко бывают ошибки, во-вторых, иногда проще вычислить всё самостоятельно, чем найти документы.
Для проведения подсчётов нам понадобятся определённые инструменты, большинство из которых можно запросто найти в каждом доме. А именно:
- рулетка;
- карандаш;
- бумага для записей;
- калькулятор (можно использовать калькулятор, который размещён на нашем сайте);
- трезвость ума и ясность мыслей.
Пол
Чтобы высчитать квадратуру пола в прямоугольной или квадратной комнате, необходимо узнать её длину и ширину.
Проводить замеры лучше у основания стен, а для этого желательно отодвинуть или вынести всю мебель. Но, если такая процедура в ваши планы не входила, можно мерить и по центру. Главное при этом, чтобы воображаемая линия, по которой будет производиться измерение, располагалась под углом в 90° к стене.
После того как данные замеров получены и проверены, их нужно перемножить по формуле , где S — площадь в квадратных метрах, a и b — длина и ширина, соответственно.
Если к основному помещению прилегает ниша или какое-нибудь другое — его площадь необходимо вычислить по тому же алгоритму, и результаты приплюсовать к площади комнаты. Если есть различные выступы, которые занимают его часть — их также следует измерить и полученный результат вычесть из общего.
С квадратами и прямоугольниками всё просто. А как посчитать S комнаты, если она имеет неправильную форму? Здесь придётся применить логическое мышление, и немного вспомнить школьный курс алгебры и геометрии. Но давайте по порядку.
Если помещение неправильной формы
Постарайтесь мысленно или на бумаге разделить комнату на простые элементы (квадраты, прямоугольники, треугольники). Далее, нужно будет высчитать размеры каждого из них, и результаты сложить.
- для треугольника — . Где a — длинна основания треугольника, b — высота, проведённая от вершины к основанию;
- для круга — . Где 3,14, r — радиус круга (чтобы узнать радиус — найдите с помощью рулетки самое длинное расстояние между стенами и разделите его на 2);
- для полукруга — (буквенные обозначения совпадают с предыдущим пунктом).
Как оказалось, и в таком случае ничего сложного нет. Главное, тщательно проверять результаты замеров, чтобы в расчёты не закралась случайная ошибка, и их не пришлось производить заново.
И ещё. Если вы хотите произвести монтаж тёплого пола, не забудьте отдельно вычислить площадь, которую занимает мебель, и вычтите её из общего значения для помещения.
С полом мы разобрались. Но при подготовке, допустим, к переклеиванию обоев это вам мало чем поможет. Нужно будет узнать точное количество квадратных метров, которое занимают стены.
Стены
Площадь каждой отдельно взятой стены можно высчитать так же, как и квадратуру пола. Только теперь вместо ширины помещения нужно будет измерить её высоту. Множим длину стены на высоту и получаем необходимый нам результат в квадратных метрах.
Измерение высоты лазерной рулеткой
А можно вычислить и для всех стен сразу. Для этого вам понадобится узнать периметр пространства. Возьмите рулетку и измерьте длину каждой стены, результаты сложите — это и будет периметр. Остаётся измерить высоту комнаты и воспользоваться следующей формулой: , где p — периметр, а h — высота.
Теперь необходимо разобраться с оконными, дверными и прочими проёмами, присутствующими в помещении.
Точнее, рассчитать площадь каждого из них (по формулам, представленным выше, в зависимости от формы проёма), результаты суммировать и вычесть из общего количества.
Существует также ряд общих рекомендаций по проведению замеров.
Как посчитать площадь комнаты: методика расчета по полу
Можно рассчитать площадь пола. Данная процедура состоит из таких этапов. Прежде всего, необходимо освободить стены помещения. Лучше проводить измерения в пустом помещении. Если помещение прямоугольное, то можно перемножить две стороны
В реальности стороны могут немного отличаться, поэтому так важно мерить все стороны. В некоторых случаях комната может быть не правильной конфигурации
В такой ситуации все пространство делится на отдельные прямоугольники. При этом можно нарисовать схему со всеми размерами. Затем считается площадь отдельных участков. Кстати, помещение не обязательно будет состоять только из прямоугольников. Оно может содержать треугольники и даже круги.
В таблице можно посмотреть соответствие площади на полу с показателями для стен при определенной высоте потолка
Если вы не знаете, как посчитать квадратные метры комнаты, то можно воспользоваться специальным калькулятором. При вычислении габаритов не обязательно соблюдать все размеры до сантиметра. Часто применяется округление значений. Иногда требуется учитывать разные углубления и выступы в стенах.
При расчетах важно учитывать и их предназначение. Если нужно узнать значения для монтажа теплого пола, то можно не учитывать пространство, занятое тяжелой мебелью
Есть варианты, когда в помещении используются разные уровни пола. В подобной ситуации также требуется поделить комнату на отдельные зоны. Не стоит осуществлять замеры по стене, так как она может иметь кривую поверхность.
Сложно определить площадь по полу, имеющего разнообразные выступы в виде волн или полукругов.
Полы сложной конфигурации требуют особой внимательности и использования специальных формул
Площадь прямоугольника
Ещё из младшей школы известно, что площадь прямоугольника равна произведению его сторон. Докажем этот факт, используя только свойства площади и выведенную нами ранее формулу площади квадрата.
Возьмем произвольный прямоугольник со сторонами a и b. Далее достроим его до квадрата со стороной (а + b):
С одной стороны, площадь большого квадрата (со стороной а + b) равна величине (а + b)2. С другой стороны, он состоит из 4 фигур, а потому его площадь равна сумме
Итак, мы доказали следующее утверждение:
Задание. Найдите площадь прямоугольника со сторонами 5 и 8 см?
Решение. Просто перемножаем эти числа:
Задание. Найдите площадь фигуры, изображенной на рисунке:
Решение. Необходимо разбить фигуры на несколько прямоугольников:
Далее считаем площадь каждого отдельного прямоугольника:
Задание. Полкомнаты необходимо покрыть паркетом. Длина и ширина комнаты равны 6 и 5,5 метрам, а каждая дощечка паркета имеет габариты 30х5 см. Сколько дощечек паркета необходимо купить для ремонта?
Решение. В таких задачах прежде всего следует все длины выразить в одних единицах измерения. Перепишем габариты комнаты:
Важно убедиться, что пол можно полностью покрыть целым числом дощечек, не используя какие-либо дощечки наполовину. Для этого габариты дощечки должны быть габаритам комнаты
Это условие соблюдается:
Получается, что для покрытия пола дощечки необходимо разместить их в 20 рядов, в каждом из которых будет 110 досок. Тогда общее количество досок будет равно
Задание. Площадь прямоугольника равна 64, а одна из его сторон имеет длину 16. Найдите вторую сторону прямоугольника.
Решение. Запишем формулу площади прямоугольника:
Задание. Найдите стороны прямоугольника, если площадь равна 500, а одна из сторон в 5 раз больше другой стороны.
Решение. Обозначим меньшую сторону переменной х. Тогда большая сторона будет в 5 раз больше, то есть она равна 5х. Площадь прямоугольника будет вычисляться как произведение этих чисел
Мы получили два значения х, 10 и (– 10). Естественно, длина отрезка не может выражаться отрицательным числом, поэтому нам подходит только значение 10. Это длина меньшей стороны. Большая же сторона в 5 раз длиннее, то есть ее длина равна
Задание. Одна сторона прямоугольника длиннее другой на 5 см, а площадь прямоугольника равна 150 см2. Вычислите обе стороны прямоугольника.
Решение. Снова обозначим длину меньшей стороны буквой х, тогда большая сторона будет иметь длину х + 5 см. По условию произведение этих сторон равно 150:
Это обычное квадратное уравнение, решаемое с помощью:
Снова получили два корня, из которых только один является положительным. Итак, меньшая сторона равна 10 см. Тогда большая сторона буде равна
Задание. Периметр прямоугольника равен 16 см, а площадь составляет 15 см2. Каковы стороны этого прямоугольника?
Решение. Обозначим смежные стороны буквами a и b. Тогда и две другие стороны также будут равны а и b. Так как периметр (его обозначают буквой Р) по определению является суммой длин всех сторон, то для прямоугольника он будет равен:
Если сюда вместо S подставить 15, а вместо а выражение 8 – b, то получим такое уравнение:
Оба полученных корня являются положительными числами, то есть устраивают нас. Зная b, легко найдем и a:
В первом случае получается, что стороны равны 3 и 5 см. Во втором случае получились те же числа, только в другом порядке: 5 и 3 см. То есть эти два ответа, по сути, идентичны друг другу.
Ответ: 5 см; 3 см.
Площадь квадрата
Из известно, что для вычисления площади квадрата достаточно умножить его сторону саму на себя. Докажем это строго, используя лишь свойства площадей.
Попробуем вычислить площадь квадрата, если известна его сторона. Если она равна 2, то квадрат можно разбить на четыре единичных квадрата, а если она равна 3, то квадрат можно разделить уже на девять единичных квадратов:
Тогда площадь квадрата со стороной 2 равна 4, а со стороной 3 уже равна 9. В общем случае квадрат со стороной n (где n– ) можно разбить n2 единичных квадратов, поэтому его площадь будет равна n2.
Но что делать в случае, если сторона квадрата – это не целое, а дробное число? Пусть оно равно некоторой дроби 1/m, например, 1/2 или 1/3. Тогда поступим наоборот – разделим сам единичный квадрат на несколько частей. Получится почти такая же картина:
В общем случае единичный квадрат можно разбить на m2 квадратов со стороной 1/m. Тогда площадь каждого из таких квадратов (обозначим ее как S)может быть найдена из уравнения:
Снова получили, что площадь квадрата в точности равна его стороне, возведенной во вторую степень.
Наконец, рассмотрим случай, когда сторона квадрата равна произвольной дроби, например, 5/3. Возьмем квадраты со стороной 1/3 и построим из них квадрат, поставив 5 квадратов в ряд. Тогда его сторона как раз будет равна 5/3:
Площадь каждого маленького квадратика будет равна 1/9, а всего таких квадратиков 5х5 = 25. Тогда площадь большого квадрата может быть найдена так:
В общем случае, когда дробь имеет вид n/m, где m и n– натуральные числа, площадь квадрата будет равна величине
Получили, что если сторона квадрата – произвольное рациональное число, то его площадь в точности равна квадрату этой стороны. Конечно, возможна ситуация, когда сторона квадрата – это . Тогда осуществить подобное построение не получится. Здесь помогут значительно более сложные рассуждения, основанные на методе «от противного».
Предположим, что есть некоторое иррациональное число I, такое, что площадь квадрата (S) со стороной I НЕ равна величине I2. Для определенности будем считать, что I2<S (случай, когда I2>S, рассматривается абсолютно аналогично). Однако тогда, извлекая корень из обеих частей неравенства, можно записать, что
Далее построим два квадрата, стороны которых имеют длины I и R, и совместим их друг с другом:
Так как мы выбрали число R так, чтобы оно было больше I, то квадрат со стороной I является лишь частью квадрата со стороной R.Но часть меньше целого, значит, площадь квадрата со стороной I (а она равна S) должна быть меньше, чем площадь квадрата со стороной R (она равна R2):
из которого следует противоположный вывод – величина R2 меньше, чем S. Полученное противоречие показывает, что исходная утверждение, согласно которому площадь квадрата со стороной I НЕ равна I2, является ошибочным. А значит, площадь квадрата всегда равна его стороне, умноженной на саму себя.
Задание. Найдите площадь квадрата, если его сторона равна
Задание. Площадь квадрата равна 25. Найдите длину его стороны.
Решение. Пусть сторона квадрата обозначается буквой х (как неизвестная величина). Тогда условие, согласно которому его площадь равна 25, можно переписать в виде уравнения:
Его , для его решения надо просто извлечь квадратный корень из правой части:
Примечание. Строго говоря, записанное уравнение имеет ещё один корень – это число (– 5). Однако его можно отбросить, так как длина отрезка не может быть отрицательным числом. В более сложных геометрических задачах отрицательные корни также отбрасывают.
Задание. Численно площадь квадрата равна периметру квадрата (с учетом того, что площадь измеряется в см2, а периметр – в см). Вычислите его площадь.
Решение. Снова обозначим сторону квадрата как х, тогда площадь (S)и периметр (Р) будут вычисляться по формулам:
По условию эти величины численно равны, поэтому должно выполняться равенство, являющееся уравнением:
Естественно, сторона квадрата не может быть равна нулю, поэтому нас устраивает только ответ х = 4. Тогда и площадь, и периметр будут равны 16.
Ответ: 16 см2.
Обратите внимание, что ответ задачи зависит от единицы измерения. Если использовать миллиметры, то сторона квадрата окажется равной 40 мм, периметр будет равен 160 мм, а площадь составит 1600 мм2
Именно поэтому в условии задачи сказано, что площадь и периметр равны численно. «По-настоящему» равными бывают только величины, измеряемые в одинаковых единицах измерения.
Немного теории
Как найти площадь различных фигур, проходили еще в начальной школе. Было это давно, так что «обновить» информацию может быть полезно. Будем рассматривать только то, что может иметь отношение к полу. Итак, начнем с самого простого — единиц измерения.
Чтобы посчитать площадь комнаты в квадратных метрах, нужен будет карандаш, рулетка и некоторый багаж знаний
Что такое 1 см² и 1 м²
Площадь любой фигуры измеряется в квадратных метрах или в квадратных сантиметрах. Обозначение см² или м², может встречаться написание кв.м, кв. см., кв. метры, кв. сантиметры и другие вариации.
Что такое один квадратный сантиметр
Один квадратный сантиметр — это площадь квадрата со стороной 1 см. Если нарисовать такой квадрат, стороны которого равны 1 см, то заштрихованная часть (на рисунке красным или синим) и будет один квадратный сантиметр. Соответственно, квадрат со стороной один метр — 1 м — имеет площадь один квадратный метр. Тот самый «квадрат площади». То есть, это квадратный участок пола (или стены) со стороной в один метр — 1 м². В одном квадратном метре десять тысяч квадратных сантиметров: 1 м² = 10000 см².
Формулы
Это то, что касалось единиц измерения и их соответствия. Но наши помещения, слава богу, больше чем один квадратный метр. Как посчитать площадь комнаты? Сколько в ней квадратных метров? Обычно комната имеет форму прямоугольника, реже — квадрата. Значит, надо будет вспомнить формулы нахождения площади квадрата и прямоугольника.
При помощи очень простых формул, можно рассчитать площадь прямоугольника и квадрата
Надо длины сторон прямоугольника перемножить. Получим искомую площадь. Давайте потренируемся.
- Имеем прямоугольник со сторонами 80 см и 50 см. Перемножаем эти цифры: 80 * 50 = 4000 см². Это и будет его площадь.
- Стороны 322 см и 300 см. Получим: 322*300 = 96000 см².
- Есть квадрат со стороной 60 см. Его площадь — 60 * 60 = 3600 см².
В случае с квадратом длину стороны можно возвести в квадрат — получится одно и то же. Но можно не морочить голову. Проще помнить, что надо стороны умножить.
Простейший калкулятор для расчета площади прямоугольной комнаты.
Перевод квадратных сантиметров в квадратные метры
Когда имеем дело с сотнями сантиметров, удобнее и проще считать в метрах. Мы знаем, что в одном метре сто сантиметров. Давайте решим те же примеры, но переведем сантиметры в метры:
- 80 см = 0,8 м; 50 см = 0,5 м. Перемножаем 0,8*0,5 = 0,4 м². То есть, 0,4 квадратных метра.
- 322 см это 3,22 м; 300 см это 3 м. Теперь умножаем полученные цифры: 3,22 * 3 = 9,6 м².
- 60 см равны 0,6 м. Площадь квадрата с такой стороной 0,6*0,6 = 0,36 м².
Цифры получаются намного меньше, запомнить их проще. И если мы хотим посчитать площадь комнаты в квадратных метрах, ее размеры мы меряем в метрах, а не сантиметрах. Можно перевести квадратные сантиметры в квадратные метры. Как уже говорили, в одном квадратном метре содержится десять тысяч квадратных сантиметров.
Соотношение квадратных сантиметров и квадратных метров
Если же у вас есть площадь в квадратных сантиметрах, чтобы перевести ее в квадратные метры, цифру надо разделить на 10 000. Например:
- 4000 см² / 10000 = 0,4 м²;
- 96000 см² / 10000 = 9,6 м²;
- 3600 см²/ 10000 = 0,36 м².
Как видите, все просто. Надо только запомнить основные положения и посчитать площадь комнаты в квадратных метрах будет совсем несложно. Нужно будет предварительно провести измерения, а потом заняться расчетами.
Калькулятор для неправильной фигуры
Очень часто измеряемое пространство имеет очень сложную форму, которую не всегда удается разбить на простые элементы.
Чтобы просто определить такую площадь, стоит воспользоваться интернет-приложением SketchAndCalc. Он является калькулятором площади неправильных фигур для любой формы изображения. Это единственный калькулятор площади, способный вычислять по загруженным изображениям, он имеет уникальную функцию, которая позволяет пользователю установить масштаб чертежа любого изображения, прежде чем рисовать периметр. Таким образом, углы или кривые неправильной фигуры легко вычисляются.
Проще говоря, если есть изображение, которое можно загрузить, или адрес карты для поиска, можете рассчитать площадь неправильной фигуры независимо от того, насколько сложна она, просто рисуя периметр области. Калькулятор может даже суммировать вычисления нескольких площадей вместе путем рисования слоев. После вычисления первой области можно добавить новый слой чертежа, что позволяет выполнить неограниченное количество вычислений области.
Результаты калькулятора площади отображаются в дюймах и метрах, увеличивая его полезность и устраняя необходимость преобразования. Это наряду с точными инструментами рисования и увеличения гарантирует, что площади каждой неправильной фигуры рассчитываются точно. Он также может размещать правильные формы многоугольника с фиксированными углами и точными линиями.
Инструмент с ограниченным рисунком привязывается к общим углам, а линию длины можно редактировать вручную с помощью клавиатуры. Приложение полезно, если измеряемая область имеет прямую сторону или длину. Еще одной уникальной особенностью SketchAndCalc TM является то, что он имеет продвинутый инструмент рисования кривой для неправильных фигур. Некоторые приложения калькулятора области позволяют осуществлять поиск по карте.
SketchAndCalc делает это очень точно, используя поиск по долготе и широте. Независимо от того, находится ли замеряемая область на сельскохозяйственных землях или в море, пользователь будет тратить меньше времени на поиск и больше времени на расчет площади территории. Это универсальная утилита, применяемая во многих отраслях промышленности, в строительстве, садоводстве. Она используется и энтузиастами по благоустройству своего дома и придомовой территории. Калькулятор ландшафта или калькулятор земельной площади также нашел своих пользователей среди землеустроителей. Теперь они знают, как рассчитать площадь участка легко и быстро.
Однако, помимо этих общих применений, многие работающие в области образования, медицины, науки и исследований нуждаются в расчете площади неправильных форм, таких как клеточные мембраны или другие объекты, обнаруженные в биологии, и с удовольствием пользуются этим приложением.
Для применения математики в повседневной жизни недостаточно уметь считать один плюс один. Существенным аспектом окружающей среды являются геометрические структуры, то есть представление повседневных предметов в прямоугольной, квадратной, круглой или треугольной форме. И надо уметь рассчитать нужную площадь.
Кроме того, геометрические фигуры используются и при построении диаграмм, схем, презентаций
Вот почему так важно уметь делать различные расчеты, в том числе и вычисление площади
Как высчитать метр квадратный: единицы изменения
При расчете площадей потолка, пола и стен, необходимо выяснить, как рассчитать квадратный метр. Для вычислений необходимо выбрать мерную ленту или рулетку с нанесением делений в сантиметрах или метрах. Такое приспособление применяются для площади в квадратных метрах.
Если величина получается больше метра, то используются не только метры, но и сантиметры.
Чтобы правильно провести расчеты можно воспользоваться калькулятором квадратных метров. При необходимости померить всю длину, можно делать это поэтапно. Например, сделать отметку там, где закончилась рулетка, а затем протянуть ее еще раз.
В таблице представлены распространенные единицы измерения площади
Ширина меряется также рулеткой. При этом ее располагают под углом в 90 градусов к длине. Если длина меньше метра, то необходимо округлить в сторону ближайшего сантиметра.
При расчете квадратных метров калькулятором, не всегда получается выполнить измерения в метрах. Показатель отображается, как в метрах, так и в сантиметрах. При этом 1 см равняется 0,01 метра. Например, 98 см равно 0,98 м. То есть можно записать 2,98 м. Чтобы получить площадь нужно длину умножить на ширину. Округлять значение можно в большую сторону.
В таблице перевода величин можно узнать необходимые значения
Стоит отметить и другие единицы измерения:
- в 1 квадратном фунте – 0,093 квадратных метра;
- в ярде – 0,84 кв. м.
Умение правильно посчитать площадь необходимо в таких случаях:
требуется точный расчет материалов для ремонта;
наемные мастера часто проводят расчеты оплаты за квадратный метр, что необходимо перепроверять для исключения обмана;
необходимы знания расчетов при выборе площади
Часто оплата коммунальных услуг вычисляется, исходя из размеров комнаты;
чтобы определить нормативы освещенности также нужно знать габариты помещения;
зная площадь, всегда можно посчитать объем, что очень важно при установке отопительных, вентиляционных и климатических устройств.. Значения для погонного метра
Значения для погонного метра
В ролике дается простое объяснение необходимых значений:
Watch this video on YouTube
Поверхность круга
Круг представляет собой форму, состоящую из замкнутой изогнутой линии. Каждая часть линии находится на одном и том же расстоянии от центра области, называемом радиусом. Еще с древних времен известно, как рассчитать площадь круга, если задан радиус. Площадь круга вычисляется по формуле S=πxr2, где: S — площадь круга,
π — число пи (3.1415), r — радиус круга.
Чтобы найти площадь круга, выполняем следующие действия. Запишите заданный радиус или диаметр величины как r или d соответственно. Как рассчитать площадь круга, если задан диаметр? Это совсем несложно, нужно вычислить радиус, разделив диаметр на 2, и перемножить данные с помощью калькулятора или вручную. Полученный ответ будет в квадратных единицах.
Задача: Найти площадь круга радиусом 10 см.
Решение: Мы имеем радиус окружности =10 см. Площадь круга =3,1416×10×10=314,16.
Ответ: 314,16 см2.
Найдите площадь круга диаметром 15 см.
Решение: У нас диаметр круга =15 см. Радиус =15/2=7,5 см. Площадь круга =3,14х7,5х7,5=176,625=176,63 (округлить до 2 знаков после запятой).
Ответ: 176,63 см2.
Что такое площадь
Площадь в простом понимании — это некое открытое пространство, которое окружено различными архитектурными постройками. На площади может располагаться фонтан или комплекс фонтанов, украшения, территория может быть обрамлена зелеными насаждениями. Площади бывают нескольких видов. Самый распространенный тип — это площадь городская, на которой проводятся общественные и социальные мероприятия. Бывают такие ее разновидности, как: торговые, вокзальные, театральные, пешеходные, мемориальные. Как правило, мемориальные площади можно отличить по характерной стене с указанием памятной даты.
Определение понятия площади
Множество измеримо по Жордану, если внутренняя мера Жордана равна внешней мере Жордана
Площадь — функция, которая обладает следующими свойствами:
- Положительность, то есть площадь неотрицательна;
- Аддитивность, то есть площадь фигуры равна сумме площадей составляющих её фигур без общих внутренних точек;
- Инвариантность, то есть площади конгруэнтных фигур равны;
- Нормированность, то есть площадь единичного квадрата равна 1.
Из данного определения площади следует её монотонность, то есть площадь части фигуры меньше площади всей фигуры.
Первоначально определение площади было сформулировано для многоугольников, затем оно было расширено на квадрируемые фигуры. Квадрируемой называется такая фигура, которую можно вписать в многоугольник и в которую можно вписать многоугольник, причём площади обоих многоугольников отличаются на произвольно малую величину. Такие фигуры называются также измеримыми по Жордану. Для фигур на плоскости, не состоящих из целого количества единичных квадратов, площадь определяется с помощью предельного перехода; при этом требуется, чтобы как фигура, так и её граница были кусочно-гладкими. Существуют неквадрируемые плоские фигуры. Предложенное выше аксиоматическое определение площади в случае плоских фигур обычно дополняют конструктивным, при котором с помощью палетки осуществляется собственно вычисление площади. При этом для более точных вычислений на последующих шагах используют палетки, у которых длина стороны квадрата в десять раз меньше длины у предыдущей палетки.
Площадь квадрируемой плоской фигуры существует и единственна. Понятие площади, распространённое на более общие множества, привело к определению множеств, измеримых по Лебегу, которыми занимается теория меры. В дальнейшем возникают более общие классы, для которых свойства площади не гарантируют её единственность.
Под площадью в обобщённом смысле понимают численную характеристику k-мерной поверхности в n-мерном пространстве (евклидовом или римановом), в частности, характеристику двумерной поверхности в трёхмерном пространстве.
Заключение
Теперь мы знаем, как правильно рассчитать площадь стен и можем, согласно полученным данным, закупить необходимое количество отделочного материала. Даже если ремонт будут осуществлять специальные квалифицированные бригады, то вы всегда сможете проверить правильность их расчетов.
Поскольку клиент оплачивает стоимость ремонта за каждый квадрат, а сторонние подрядчики частенько считают в свою пользу, не учитывая окон и дверей, то эти знания помогут вам существенно сократить стоимость ремонта, особенно при использовании дорогих отделочных материалов. Для полной уверенности рекомендуется проводить все замеры дважды, что позволит избежать возможной ошибки.
Начиная ремонт, первым делом нужно определить необходимое количество строительных материалов. Провести расчеты могут специалисты, которые будут выполнять работы. Но они часто делают вычисления с большой погрешностью в свою пользу. Рассмотрим, как самостоятельно посчитать площадь стен.
Для расчетов понадобятся:
- уровень строительный;
- рулетка с ограничителем;
- длинная линейка и угольник;
- карандаш и бумага;
- калькулятор.
Для нанесения размеров нарисуем схему комнат. Обозначим двери, окна, ниши, выступы. Результаты замеров нанесем на чертеж.