Единицы измерения и дозы радиации

Содержание:

Допустимые и смертельные дозы радиации

Допустимая норма радиации – это условная цифра, вычисленная путем клинических исследований и наблюдений за пациентами с лучевым поражением. Есть годовая норма – 1 мкЗв, исходя из нее, за пять лет человек не должен получать более 5 мкЗв.

Допустимые нормативы

Допустимая норма может отличаться даже в территориальных образованиях. В России она определяется как 50–60 мкР/ч, а в Бразилии максимальным ограничением считается граница в 100 мкР/ч. Измерение в микрозивертах было введено в обращение всего четыре десятилетия назад, до этого применяли измерение в мкР/ч.

Приведенная ниже таблица показывает единицы измерения и нормы.

Время в мкР в ч в микрозивертах
1 год 50 микрорентген 1
5 лет 500 микрорентген 5
70 лет 7000 микрорентген 70

Приведенная цифра в микрозивертах – это предел, который только допускается, но оптимальным считается 0,2 мкЗв/ч. В мкР/ч это достаточно просто высчитать, если знать, что 100 мкР = 1 мкЗв.

Нормы и правила

Создана ли радиация человеком

Так как все случаи радиационного загрязнения природы и гибели людей связаны с деятельностью человека, принято считать, что радиация это в принципе творение рук человеческих, но это не так.

Радиация имеет полностью естественное происхождение. Она была до нас и будет, даже если мы сами или что-то уничтожит нас на нашей планете. Например, солнечные лучи это тоже радиация, просто она сильно отфильтрована нашей атмосферой. Хотя, в жарких странах, где лучи проходят через атмосферу по прямой, естественный радиационный фон достаточно высокий. Умереть от этого вряд ли получится, но на полюсах все же безопасней.

Загар — это прекрасно, но загорать надо с умом. не забывайте про крем.

Везде в космосе есть радиация. Все из-за того, что она является ничем иным, как высокоэнергетическими частицами, которые ионизируют атомы. В итоге они могут приводить к структурным изменениям и даже разрушать молекулы человеческого тела. Ядра некоторых атомов нестабильны и они могут, излучая частицы, переходить в стабильное состояние. В итоге и получается альфа-, бета- или гамма-излучение.

Эти частицы есть везде. Поэтому и существует понятие ”естественный радиационный фон”. Он не причиняет вреда человеку, так как мы к нему адаптировались, но с избыточными дозами, вроде солнечных мест и зон радиационных испытаний или катастроф, лучше быть осторожным.

Откуда появляется природная радиация?

Естественный радиационный фон Земли связан с ее историей и эволюцией биосферы. С момента зарождения нашей планеты она находилась под постоянным влиянием космических излучений. Колоссальное количество космогенных радионуклидов было задействовано при формировании земной коры. Ученые полагают, что тектонические процессы, расплавленная магма, образование горных систем обязаны своим появлением радиоактивному распаду и разогреву недр. В местах разломов, сдвигов и растяжений земной коры, океанических впадин радионуклиды выходили на поверхность и появлялись места с мощным ионизирующим излучением. Образования сверхновых звезд также оказывали влияние на Землю – уровень космического излучения повышался на ней в десятки раз. Правда, сверхновые рождались примерно одни раз в сотни миллионов лет. Постепенно радиоактивность Земли снижалась.

В настоящее время биосфера Земли по-прежнему испытывает воздействие космического излучения, радионуклидов, рассеянных в твердых земных породах, океанах, морях, подземных водах, воздухе и в живых организмов. Совокупность перечисленных составляющих радиационного фона (ионизирующего излучения) принято называть естественным радиоактивным фоном. Естественная радиоактивность включает несколько компонентов:

  •  космические излучения;
  •  радиоактивные вещества в составе земных недр;
  •  радионуклиды в воде, пище, воздухе и стройматериалах.

Естественная радиация является неотъемлемой составляющей природной среды обитания. Честь ее открытия принадлежит французскому ученому А. Беккерелю, который случайно открыл феномен естественной радиоактивности в 1896 году. А в 1912 году австрийский физик В. Гесс открыл космические лучи, сравнив ионизацию воздуха в горах и на уровне моря.

Мощность космического излучения неоднородна. Ближе к поверхности земли она уменьшается за счет экранирующего атмосферного слоя. И, наоборот, в горах она сильнее, поскольку защитный экран атмосферы слабее. Например, в самолете, который летит в небе на высоте 10 000 метров, уровень радиации превышает приземную радиацию почти в 10 раз. Сильнейший источник радиоактивного излучения – Солнце. И здесь атмосфера служит нашим защитным экраном.

Естественный радиационный фон в различных местах мира

Допустимый радиационный фон в разных уголках планеты значительно отличается.  Во Франции, например, годовая доза естественного облучения составляет 5 мЗв, в Швеции — 6,3 мЗв, а в нашем Красноярске всего 2,3 мЗв. На золотых пляжах Гуарапари в Бразилии, где ежегодно отдыхает больше 30000 человек, уровень радиации составляет 175 мЗв/год из-за высокого содержания тория в песке. В горячих источниках городка Рам-Сер в Иране уровень радиации достигает 400 мЗв/год. На знаменитом курорте Баден-Бадене также повышенный радиационный фон, как и на некоторых других популярных курортах. Радиационный фон в городах контролируют, но это усредненный показатель. Как не попасть впросак, если вы не хотите подвергать здоровье испытанию повышенной дозой естественных радионуклидов? Индикатор радиоактивности станет вашим надежным экспертом в путешествиях.

Как попадает радон в помещение?

Если к примеру жилой дом расположен в районе скопления радона и под фундаментом дома в земной коре имеется трещина, то радон может проникать, сначала в подвальные помещения, а далее через систему вентиляции в выше расположенные помещения (квартиры).

Попадание радона в жилое помещение возможно, если будут нарушены сразу несколько строительных норм при строительстве жилого здания:

  • Перед строительством любого жилого объекта должно проводится обследование земельного участка и выдаваться официальное заключение об соответствии нормам радонового излучения. Если выделения радона выше нормы, то должны быть приняты дополнительные строительные решения по защите. Либо вообще строительство жилых помещений запрещается на данном земельном участке. Без данного заключения, нельзя получить заключение государственной экспертизы на строительный объект и получить разрешение на строительство.
  • При проектировании и строительстве здания обязательно предусматривается гидроизоляция фундамента, которая предотвращает попадание не только влаги, но и радона в подвальные помещения, а затем внутрь квартиры. Эта норма часто нарушается при строительстве и является одной из основных причин попадания радона в жилые помещения.
  • В жилых помещениях должна хорошо работать система естественной приточно-вытяжной вентиляции. Часто, из-за нарушения при строительстве или при проведении ремонтных работ, система вентиляции оказывается не работоспособной. В результате, в квартиру из вытяжного канала вентиляции поступает поток воздуха, который захватывается из подвального помещения дома вместе с радоном.

Если все строительные нормы соблюдены, то даже наличие залежей радона под жилым домом не приведет к дополнительному облучению радиацией, радон просто не будет попадать в жилые помещения. То есть облучение радоном происходит только при нарушении норм проектирования и строительства зданий и сооружений, из-за халатности ответственных лиц или жажды сэкономить на строительстве.

При нормальных условиях человек не должен подвергаться действию радона.

Если человек подвергается действию радона, то в 99% случаев это вызвано нарушением действующих норм и правил.

Не стоит пренебрегать опасностью радона. Он опасен! Если есть основания и сомнения, лучше провести замеры радона у себя в жилом помещении, особенно если это коттедж или частный дом.

Симптоматика лучевой болезни

Если нормальная доза радиации была превышена не критически, то появляются симптомы лучевой травмы. Среди них выделяют:

  • Приступы тошноты и рвоты.
  • Сухость слизистых поверхностей носоглотки.
  • Во рту ощущается вкус горечи.
  • Появляются сильные головные боли.
  • Пострадавший быстро устает, его покидают жизненные силы.
  • Снижается артериальное давление.

В случае превышения дозы облучения в 10 Зв наблюдаются следующие признаки:

  • Покраснение отдельных участков кожи. Со временем они приобретают синий оттенок.
  • Изменяется частота сокращения сердечной мышцы.
  • Снижается мышечный тонус.
  • Появляется тремор в пальцах.
  • Пропадает сухожильный рефлекс.

Спустя четыре дня выраженные симптомы пропадают. Заболевание переходит в скрытую форму. Ее продолжительность будет зависеть от степени поражения организма. При этом в значительной степени снижаются все рефлексы организма, проявляются симптомы невралгического характера.

Если доза облучения превышала 3 ЗВ, то спустя две недели начинается интенсивное облысение. При дозе выше 10 Зв заболевание сразу же переходит в третью фазу. Наблюдается серьезное изменение состава крови, развиваются инфекционные заболевания. В кратчайшие сроки наступает отек мозга, полностью пропадает мышечный тонус. В подавляющем большинстве случаев человек погибает.

Естественная радиоактивность

Естественная радиация была всегда: до появления человека, и даже нашей планеты. Радиоактивно всё, что нас окружает: почва, вода, растения и животные. В зависимости от региона планеты уровень естественной радиоактивности может колебаться от 5 до 20 микрорентген в час (20 мкР/ч = 0.20 мкЗв/ч). По сложившемуся мнению, такой уровень радиации не опасен для человека и животных, хотя эта точка зрения неоднозначна, так как многие ученые утверждают, что радиация даже в малых дозах приводит к раку и мутациям. Правда, в связи с тем, что повлиять на естественный уровень радиации мы практически не можем, нужно стараться максимально оградить себя от факторов, приводящих к значительному превышению допустимых значений.

Вспышки на солнце — один из источников«естественного» радиационного фона Уровень радиации в салоне самолетана высоте 10 000 м превышает естественный в 10 раз

Откуда же берется естественная радиоактивность? Существует три основных источника:

1. Космическое излучение и солнечная радиация — это источники колоссальной мощности, которые в мгновение ока могут уничтожить и Землю, и всё живое на ней. К счастью, от этого вида радиации у нас есть надёжный защитник — атмосфера. Впрочем, интенсивная человеческая деятельность приводит к появлению озоновых дыр и истончению естественной оболочки, поэтому не следует слишком долго находиться под воздействием прямых солнечных лучей. Интенсивность влияния космического излучения зависит от высоты над уровнем моря и широты. Чем выше Вы над Землей, тем интенсивнее космическое излучение, с каждой 1000 метров сила воздействия удваивается, а на экваторе уровень излучения гораздо сильнее, чем на полюсах.

Ученые отмечают, что именно с проявлением космической радиации связаны частые случаи бесплодия у стюардесс, которые основное рабочее время проводят на высоте более десяти тысяч метров. Впрочем, обычным гражданам, не увлекающимся частыми перелетами, волноваться о космическом излучении не стоит.

Источники попадания радона в дома и квартиры Соотношение естественных источников радиации

2. Излучение земной коры. Помимо космического излучения радиоактивна и сама наша планета. В её поверхности содержится много минералов, хранящих следы радиоактивного прошлого Земли: гранит, глинозём и т.п. Сами по себе они представляют опасность лишь вблизи месторождений, однако человеческая деятельность ведёт к тому, что радиоактивные частицы попадают в наши дома в виде стройматериалов, в атмосферу после сжигания угля, на участок в виде фосфорных удобрений, а затем и к нам на стол в виде продуктов питания. Известно, что в кирпичном или панельном доме уровень радиации может быть в несколько раз выше, чем естественный фон данной местности. Таким образом, хотя здание и может в значительной мере уберечь нас от космического излучения, но естественный фон легко превышается при использовании опасных материалов.

Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним.

Накопление радона в разных комнатах

Радон активно поступает в наши дома с бытовым газом, водопроводной водой (особенно, если её добывают из очень глубоких скважин), или же просто просачивается через микротрещины почвы, накапливаясь в подвалах и на нижних этажах. Снизить содержание радона, в отличие от других источников радиации, очень просто: достаточно регулярно проветривать помещение и концентрация опасного газа уменьшится в несколько раз.

Как измерить уровень излучения с помощью камеры смартфона

CMOS-матрицы в камерах смартфонов чувствительны не только к видимому свету. Они воспринимают и более короткие волны — рентгеновское и гамма-излучение.

За время выдержки для среднего фото (до 100 мс) следов воздействия такого излучения матрица не зафиксирует. К тому же его перекроет излучение в видимом диапазоне.

Но выход есть! Заклейте камеру черной изолентой. Она защитит от видимого излучения, но позволит рентгеновским и гамма-фотонам попадать на матрицу. После этого приложению останется только подсчитать количество фотонов и преобразовать это значение в понятные единицы измерения. 

Насколько точно это работает? В 2014 году специалисты Австралийской организации по ядерной науке и технологиям (ANSTO) протестировали приложение Radioactivity Counter на Samsung Galaxy S2 и Apple iPhone 4S. Они определяли поглощенную предметами дозу излучения в мкГр/ч (для гамма-излучения единицы Гр (грей) и Зв эквивалентны). 

Точный дозиметр должен показать линейный отклик на разные дозы радиации. Результаты не должны зависеть от ориентации смартфона в пространстве. 

В целом смартфоны хорошо справились с задачей. Samsung показал линейный отклик при мощности излучения от 20 микрогрей в час (мкГр/ч, 10-6 Гр/ч), iPhone – от 30 мкГр/ч (в смартфоне Apple использовали фронтальную камеру, на которую мог попадать свет от экрана). От ориентации устройства показатели не зависели. 

Мощность измеренной дозы обеспечивает годовую дозу радиации около 0,18-0,26 Зв (для гамма-излучения 1 Зв эквивалентен 1 Гр). Это в 180-260 раз больше безопасной по российским стандартам нормы. 

Если смартфон обнаружил такое или более высокие значения, вы достаточно быстро и без последствий сможете убраться подальше от источника излучения.

Приложение Radioactivity Counter платное, но дозиметры, как правило, дороже. Версия для iOS, для Android. 

На измерение стоит потратить не менее 10 минут. А лучше – целый час, так результат будет точнее. 

Исследований на тему CMOS-матриц и фиксации излучения много: вот еще один пример. А здесь есть сравнение чувствительности CMOS-матриц смартфонов к излучению и тесты в разных приложениях: GammaPix, Radioactivity-Meter, RadSensor и уже упомянутом Radioactivity Counter. 

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется — поглощенной дозой.

Поглощенная доза — это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется — Грей (Гр).

1 Грей — это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза — это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется — Кулон/кг (Кл/кг).

1 Кл/кг= 3,88*103 Р

Используемая внесистемная единица экспозиционной дозы — Рентген (Р):

1 Р = 2,57976*10-4 Кл/кг

Доза в 1 Рентген — это образование 2,083*109 пар ионов на 1см3 воздуха

Влияние радиации на состояние здоровья людей

Влияние радиации на людской организм называется облучением. В процессе этого воздействия радиоактивная энергия внедряется в клетки, при этом разрушая их. При облучении могут проявляться самые разнообразные болезни, типа инфекционных осложнений, нарушений обмена веществ, злокачественных опухолей и лейкоза, бесплодия, катаракты и многого другого. В особенности необычайно остро радиация может воздействовать на процесс деления клеток, из-за этого она представляет чрезвычайную опасность для детского организма.

Людской организм может реагировать не столько на саму радиацию, как на ее источники. Проникновение в организм радиоактивных веществ может происходить разными путями. Например, появление ее в кишечнике может происходить при приеме пищи или воды, в легких — в  процессе дыхания, а на коже или через нее при проведении медицинской диагностики с помощью радиоизотопов. Это будет так называемым внутренним облучением.

Как вывести радиацию из организма? Таким вопросом, несомненно, задаются многие люди. Так, например, известно, что при употреблении отдельных продуктов питания, а также витаминов можно оказать помощь организму в его очистке от незначительных радиоактивных доз. Хотя во времена Чернобыльской катастрофы ходили слухи, что представители КГБ знали, как вывести радиацию, находясь в зоне, и выходили из нее без вреда для организма. Домыслы  опирались на то, что они якобы принимали внутрь какой-то особый совершенно секретный активированный уголь или какой-то аналог.

Бета-распад.

Бета-распад наблюдается как у тяжелых, так и у легких ядер, например, у трития. Эти легкие частицы (быстрые электроны) обладают более высокой проникающей способностью. Так, в воздухе b-частицы могут пролететь несколько десятков сантиметров, в жидких и твердых веществах – от долей миллиметра до примерно 1 см. В отличие от a-частиц, энергетический спектр b-лучей не дискретный. Энергия вылетающих из ядра электронов может меняться почти от нуля до некоторого максимального значения, характерного для данного радионуклида. Обычно средняя энергия b-частиц намного меньше, чем у a-частиц; например, энергия b-излучения 228Ra составляет 0,04 МэВ. Но бывают и исключения; так b-излучение короткоживущего нуклида 11Ве несет энергию 11,5 МэВ. Долго было неясно, каким образом из одинаковых атомов одного и того же элемента вылетают частицы с разной скоростью. Когда же стало известно понятно строение атома и атомного ядра, появилась новая загадка: откуда вообще берутся вылетающие из ядра b-частицы – ведь в ядре никаких электронов нет. После того как в 1932 английский физик Джеймс Чедвиком открыл нейтрон, отечественные физики Дмитрий Дмитриевич Иваненко (1904–1994) и Игорь Евгеньевич Тамм и независимо немецкий физик Вернер Гейзенберг предположили, что атомные ядра состоят из протонов и нейтронов. В таком случае b-частицы должны образоваться в результате внутриядерного процесса превращения нейтрона в протон и электрон: n p + e. Масса нейтрона немного превышает суммарную массу протона и электрона, избыток массы, в соответствии с формулой Эйнштейна E = mc2, дает кинетическую энергию вылетающего из ядра электрона, поэтому b-распад наблюдается, в основном, у ядер с избыточным числом нейтронов. Например, нуклид 226Ra – a-излучатель, а все более тяжелые изотопы радия (227Ra, 228Ra, 229Ra и 230Ra) – b-излучатели.

Оставалось выяснить, почему b-частицы, в отличие от a-частиц, имеют сплошной спектр энергии, это означало, что одни из них обладают очень малой энергией, а другие – очень большой (и при этом движутся со скоростью, близкую к скорости света). Более того, суммарная энергия всех этих электронов (она была измерена с помощью калориметра) оказалась меньше, чем разность энергии исходного ядра и продукта его распада. Снова физики с толкнулись с «нарушением» закона сохранения энергии: часть энергии исходного ядра непонятно куда исчезала. Незыблемый физический закон «спас» в 1931 швейцарский физик Вольфганг Паули, который предположил, что при b-распаде из ядра вылетают две частицы: электрон и гипотетическая нейтральная частица – нейтрино с почти нулевой массой, которая и уносит избыток энергии. Непрерывный спектр b-излучения объясняется распределением энергии между электронами и этой частицей. Нейтрино (как потом оказалось, при b-распаде образуется так называемое электронное антинейтрино ) очень слабо взаимодействует с веществом (например, легко пронзает по диаметру земной шар и даже огромную звезду) и потому долго не обнаруживалось – экспериментально свободные нейтрино были зарегистрированы только в 1956 г. Таким образом, уточненная схема бета-распада такова: n p + . Количественную теорию b-распада на основе представлений Паули о нейтрино разработал в 1933 итальянский физик Энрико Ферми, он же предложил название нейтрино (по-итальянски «нейтрончик»).

Превращение нейтрона в протон при b-распаде практически не изменяет массу нуклида, но увеличивает заряд ядра на единицу. Следовательно, образуется новый элемент, смещенный в периодической таблице на одну клетку вправо, например: , , и т.д. (одновременно из ядра вылетают электрон и антинейтрино).

Все ли виды радиации опасны?

Радиационное облучение не всегда смертельно и губительно, как принято полагать. В некоторых случаях нестабильность изотопов различных элементов используется во благо, в частности, в селекции растений и животных, медицине, энергетике и народном хозяйстве.

Радиация и радиоактивность — одно и то же?

Радиация и радиоактивность — понятия схожие, но совсем не тождественные. Радиацией называют свободные потоки энергии, которые существуют в пространстве до тех пор, пока не поглотятся каким-либо предметом. Радиоактивность же — это способность предмета или вещества поглощать излучение, становясь источником радиации.

Виды излучения и проникающая способность

Различают несколько видов радиационного излучения, среди наиболее значимых выделяют следующие:

  1. Альфа-излучение — поток положительных частиц со сравнительно большой массой, они обладают мощной ионизацией и представляют серьезную опасность при попадании в организм через ЖКТ, но при этом задерживаются даже небольшими преградами и не проникают под кожу.
  2. Бета-излучение — мельчайшие частицы с несколько большей проникающей способностью. Защитить от такого излучения может тонкий слой алюминия или несколько сантиметров дерева.
  3. Гамма-излучение и подобное ему рентгеновское — поток нейтрально заряженных частиц, имеющих высокую проникающую способность, представляет наибольшую опасность для человека. Защитить от облучения могут материалы с тяжелыми ядрами, и для этого понадобится слой в несколько метров.

Естественная и искусственная радиация

Излучение может быть как естественным, так и появляться вследствие деятельности человека. В природе мощными источниками радиации являются Солнце и процесс распада некоторых элементов в составе земной коры. Даже в организме человека в норме имеются вещества, которые создают персональный радиационный фон.

Искусственная радиация является следствием деятельности атомных электростанций, разработки и применения любой техники, в которой используются ядерные реакторы, а также использования радиоактивных изотопов в медицине, добычи элементов с нестабильными атомными ядрами, проведения испытаний, захоронения опасных отходов и утечки ядерного топлива.

Внешнее и внутреннее облучение

Естественный радиационный фон обуславливается наличием внешних и внутренних источников радиации. Основные пути проникновения радиации в организм человека:

  • через пищеварительный тракт, что обусловлено условиями жизни и характером деятельности человека;
  • через слизистые оболочки и кожу, что также определяется местоположением и может быть связано с особенностями местности проживания (влияют близость искусственных источников радиации, географическая широта и высота над уровнем моря) и строительными материалами, содержащими радиоактивные вещества, из которых построены объекты жилищного фонда и инфраструктуры.

Основные единицы измерения ионизирующих излучений

Рентген (Р, R) – внесистемная единица экспозиционной дозы фотонного (гамма- и рентгеновского) излучений. Микрорентген – миллионная часть рентгена, мкР

Поглощённая доза (сокращённое обозначение – д о з а) – определяется двумя основными способами.

Для малых и средних уровней облучения – применяют единицы Зиверт. Дальше – считают в единицах Грэй. По цифрам, эти ед-цы примерно равны.
Зиверт (Зв, Sv) – в системе единиц СИ, поглощенная доза с учётом, в виде коэффициентов,
энергии и типов излучения (эквивалентная) и радиочувствительности живых органов и тканей в теле человека (эффективная). Данная ед-ца используется до величин дозы – порядка 1.5 зиверта, для более высоких значений облучения – используют Грэи.

1 миллизиверт (мЗв. mSv) = 0.001 зиверт

1 микрозиверт (мкЗв. µSv) = 0.001 милизиверт

Для оценки влияния ионизирующего облучения на человека – служит величина индивидуальной эффективной дозы (ИЭД, мЗв/чел.) Медицинская компонента, обусловленная использованием ИИИ (источников ион. излучения) в медицинских целях – составляет от 20 до 30%.

бэр – биологический эквивалент рентгена; это старая, внесистемная единица поглощённой дозы; современная – Зиверт.

1 бэр ~ 1 сЗв (сантизиверт).

1 Зв ~ 100 бэр
Мощность дозы – д о з а  излучения за единицу времени:

0.10 мкЗв/час == 10 мкР/час
(двойной знак равенства означает здесь «примерно»)

1 зиверт == 100 рентген

Коэффициент качества излучения для гамма-квантов и бета-частиц равен единице (Q=1), для быстрых нейтронов Q=10, для альфа-частиц Q=20 и т.д.

Активность (А) радиоактивного вещества – число спонтанных ядерных превращений в этом вещ-ве на определённой площади, в единичном кубическом объёме («объёмная активность») или в единице веса («удельная активность») за малый промежуток времени. Единицей измерения активности, в системе СИ, является:

1 беккерель (Бк, Bq) = 1 ядерное превращение в секунду

109 Бк = 1 гигабеккерель (ГБк, GBq)

До сих пор ещё используется (особенно часто – на экологических картах радиоактивного заражения, в расчёте на квадратный километр) старая внесистемная единица измерения активности рад.вещ. в сист. СГС – К ю р и:
1 кюри (Ки, Ci) = 3,7 х 1010 беккерель = 37 гигабеккерель (ГБк, GBq)

1 мкКи (микрокюри) = 3,7 х 104 распадов в секунду = 2,22 х 106 расп. в минуту.

Человеческий организм содержит примерно 0,1 мкКи калия-40 натурального происхождения.
Верхнее значение безопасной (то есть, на уровне естественной) «минимально значимой активности» (МЗА) – находится в пределах от 3.7 кБк (килобеккерель) до 37 МБк (мегабеккерель), в зависимости от вида излучения (до удельных 74 кБк/кг – для твёрдых бета-активных,
менее 3.7 кБк/кг – для гаммаактивных, меньше 7.4 кБк/кг – для альфаактивных веществ, до 0.37 кБк/кг – для трансурановых).

Грэй (Гр, Gy) – в системе СИ, величина энергии ионизирующего излучения, переданная веществу.

1 Гр (ед. СИ) = 100 рад (внесистемная единица) == 100 рентген (с точностью 15-20%, для энергий 0.1-5 МэВ)

5 мГр == 500 мР = 0.5 Р (безопасная доза общего кратковременного облучения – исключаются клинически выраженные соматические эффекты; при медицинском обследовании или лечении – это как снимок флюорографии, сделанный на старом аппарате, раз в год).

При экспозиционной дозе в 1 рентген, поглощённая доза в воздухе будет 0,85 рад

Радиация и радиационный фон, какую дозу человек получает за год

Услышав слово «радиация», вы, наверное, сразу себе представили атомную станцию и людей в специальных костюмах с дозиметрами, а в ушах появился легкий треск. А что вы знаете про радиационный фон, какова его норма и из чего он складывается в современном мире? Интересно? Тогда сейчас я расскажу все подробно.

Что такое радиация

Итак, для начала давайте узнаем, что же такое радиация. Радиация — это ионизирующее излучение (поток фотонов, элементарных частиц или же атомов ядер), которое способно ионизировать вещество. Звучит не совсем понятно, верно? Если сказать по-простому, то радиация — это излучение, которое оказывает то или иное (чаще отрицательное) воздействие на живой организм.

Откуда она берется

Итак, основными источниками радиации являются:

  1. Естественные (природные) радиоактивные вещества, которые окружают и находятся внутри нас (73% от общего фона).
  2. Разнообразные медицинские процедуры (флюорография и т. п. Порядка 13% от общего фона).
  3. Излучение из космического пространства (14% от общего фона).

Кроме этого существует еще один источник радиоактивного излучения, но он к естественному фону не имеет никакого значения. Я имею виду техногенные катастрофы (например, печально известная авария на Чернобыльской АЭС).

Кроме этого за последние 50 лет было произведено просто огромное количество ядерных испытаний, которые так же внесли свою лепту в увеличение общего радиационного фона нашей планеты.

В результате взрывов общее содержание в атмосфере такого элемента как углерод-14 выросло на 2,6%. И на сегодняшний день такие испытания увеличили радиационную нагрузку на человека на 1 мбэр/год, что равно примерно 1% от общей дозы ежегодного облучения.

Помимо этого, энергетика также вносит свои коррективы. Ведь мы добываем огромное количество нефти, угля, газа, среди которых на поверхность поднимаются такие элементы как калий-40, уран-238 и торий-232.

И если измерить радиационный фон возле ТЭЦ, то можно увидеть, что приблизительная годовая доза будет составлять от 0,5 до 5 мбэр/год.

В каких единицах измеряется радиация

Для того, чтобы измерить энергию излучения используют разные величины. Так, например, среди медиков радиацию измеряют в зиверт, которая характеризует эквивалентную дозу облучения, полученную организмом за процедуру. Именно в этой величине принято измерять уровень радиационного фона.

А вот, такая единица измерения как Беккерель используется для определения радиоактивности воды, почвы и т. д. за единицу объема.

Максимально допустимые дозы облучения

У каждого, кто хоть раз изучал данную тематику, сразу же вставал вопрос, а какой уровень радиации безопасен?

Так вот, естественным, а значит и безопасным фоном считается фон порядка 0,1 – 0,2 мкЗв/ч.

Принято считать постоянный фон выше 1,2 мкЗв/ч опасным для человека (тут следует понимать четкое различие между постоянным воздействием и краткосрочным).

«А много ли это?» — спросите вы.

Так вот, например радиационный фон возле «Фукусима -1» сразу после аварии, превышал допустимую норму в 1600 раз и был зафиксирован уровень в 161 мкЗв/час.

А на Чернобыльской АЭС уровень радиации достигал величины в несколько тысяч микрозиверов в час.

Летчики да и пассажиры авиалайнеров, пролетая даже над так называемыми чистыми территориями за три часа полета получают дозу облучения в 30 мкЗв.

Если у вас до сих пор старый лучевой монитор, ну или телевизор, то за два часа просмотра вы получаете такую же дозу как если бы вы сходили в кабинет флюорографии.

А вот любители покурить вместе с никотином и другими маслами получают облучение в 2,7 мкЗв за год (при условии курения одной сигареты в сутки).

На сегодня это все, что я хотел вам рассказать про радиацию и радиационный фон. В следующих статьях я расскажу вам о том, каким образом влияют на организм различные дозы радиации, а так же каким образом можно обезопасить себя от лишней радиации. Так что подписывайтесь и делайте репосты с лайками (если конечно материал вам понравился).

Какова допустимая доза облучения при медицинских исследованиях?

Сколько же раз можно делать флюорографию, рентген или КТ, чтобы не нанести вреда здоровью? Есть мнение, что все эти исследования безопасны. С другой стороны, они не проводятся у беременных и детей. Как разобраться, что есть правда, а что — миф?

Оказывается, допустимой дозы облучения для человека при проведении медицинской диагностики не существует даже в официальных документах Минздрава. Количество зивертов подлежит строгому учету только у работников рентгенкабинетов, которые изо дня в день облучаются за компанию с пациентами, несмотря на все меры защиты. Для них среднегодовая нагрузка не должна превышать 20 мЗв, в отдельные годы доза облучения может составить 50 мЗв, в виде исключения. Но даже превышение этого порога не говорит о том, что врач начнет светиться в темноте или у него вырастут рога из-за мутаций. Нет, 20–50 мЗв — это лишь граница, за которой повышается риск вредного воздействия радиации на человека. Опасности среднегодовых доз меньше этой величины не удалось подтвердить за многие годы наблюдений и исследований. В тоже время, чисто теоретически известно, что дети и беременные более уязвимы для рентгеновских лучей. Поэтому им рекомендуется избегать облучения на всякий случай, все исследования, связанные с рентгеновской радиацией, проводятся у них только по жизненным показаниям.

Опасная доза облучения

Доза, за пределами которой начинается лучевая болезнь — повреждение организма под действием радиации — составляет для человека от 3 Зв. Она более чем в 100 раз превышает допустимую среднегодовую для рентгенологов, а получить её обычному человеку при медицинской диагностике просто невозможно.

Есть приказ Министерства здравоохранения, в котором введены ограничения по дозе облучения для здоровых людей в ходе проведения профосмотров — это 1 мЗв в год. Сюда входят обычно такие виды диагностики как флюорография и маммография. Кроме того, сказано, что запрещается прибегать к рентгеновской диагностике для профилактики у беременных и детей, а также нельзя использовать в качестве профилактического исследования рентгеноскопию и сцинтиграфию, как наиболее «тяжелые» в плане облучения.

Количество рентгеновских снимков и томограмм должно быть ограничено принципом строгой разумности. То есть исследование необходимо лишь в тех случаях, когда отказ от него причинит больший вред, чем сама процедура. Например, при воспалении легких приходится делать рентгенограмму грудной клетки каждые 7–10 дней до полного выздоровления, чтобы отследить эффект от антибиотиков. Если речь идет о сложном переломе, то исследование могут повторять еще чаще, чтобы убедиться в правильном сопоставлении костных отломков и образовании костной мозоли и т. д.

Есть ли польза от радиации?

Известно, что в номе на человека действует естественный радиационный фон. Это, прежде всего, энергия солнца, а также излучение от недр земли, архитектурных построек и других объектов. Полное исключение действия ионизирующей радиации на живые организмы приводит к замедлению клеточного деления и раннему старению. И наоборот, малые дозы радиации оказывают общеукрепляющее и лечебное действие. На этом основан эффект известной курортной процедуры — радоновых ванн.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector