Утепление дома с помощью поролона: основные характеристики и правила применения поролона

Содержание:

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Материал Коэфф. тепл. Вт/(м2*К)
Алебастровые плиты 0,470
Алюминий 230,0
Асбест (шифер) 0,350
Асбест волокнистый 0,150
Асбестоцемент 1,760
Асбоцементные плиты 0,350
Асфальт 0,720
Асфальт в полах 0,800
Бакелит 0,230
Бетон на каменном щебне 1,300
Бетон на песке 0,700
Бетон пористый 1,400
Бетон сплошной 1,750
Бетон термоизоляционный 0,180
Битум 0,470
Бумага 0,140
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,100
Войлок шерстяной 0,045
Гипс строительный 0,350
Глинозем 2,330
Гравий (наполнитель) 0,930
Гранит, базальт 3,500
Грунт 10% воды 1,750
Грунт 20% воды 2,100
Грунт песчаный 1,160
Грунт сухой 0,400
Грунт утрамбованный 1,050
Гудрон 0,300
Древесина — доски 0,150
Древесина — фанера 0,150
Древесина твердых пород 0,200
Древесно-стружечная плита ДСП 0,200
Дюралюминий 160,0
Железобетон 1,700
Зола древесная 0,150
Известняк 1,700
Известь-песок раствор 0,870
Ипорка (вспененная смола) 0,038
Камень 1,400
Картон строительный многослойный 0,130
Каучук вспененный 0,030
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,200
Кирпич кремнеземный 0,150
Кирпич пустотелый 0,440
Кирпич силикатный 0,810
Кирпич сплошной 0,670
Кирпич шлаковый 0,580
Кремнезистые плиты 0,070
Латунь 110,0
Лед 0°С 2,210
Лед -20°С 2,440
Липа, береза, клен, дуб (15% влажности) 0,150
Медь 380,0
Мипора 0,085
Опилки — засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,190
Пенобетон 0,300
Пенопласт ПС-1 0,037
Пенопласт ПС-4 0,040
Пенопласт ПХВ-1 0,050
Пенопласт резопен ФРП 0,045
Пенополистирол ПС-Б 0,040
Пенополистирол ПС-БС 0,040
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,060
Пеностекло тяжелое 0,080
Пергамин 0,170
Перлит 0,050
Перлито-цементные плиты 0,080
Песок 0% влажности 0,330
Песок 10% влажности 0,970
Песок 20% влажности 1,330
Песчаник обожженный 1,500
Плитка облицовочная 1,050
Плитка термоизоляционная ПМТБ-2 0,036
Полистирол 0,082
Поролон 0,040
Портландцемент раствор 0,470
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,050
Резина 0,150
Рубероид 0,170
Сланец 2,100
Снег 1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) 0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности) 0,230
Сталь 52,0
Стекло 1,150
Стекловата 0,050
Стекловолокно 0,036
Стеклотекстолит 0,300
Стружки — набивка 0,120
Тефлон 0,250
Толь бумажный 0,230
Цементные плиты 1,920
Цемент-песок раствор 1,200
Чугун 56,0
Шлак гранулированный 0,150
Шлак котельный 0,290
Шлакобетон 0,600
Штукатурка сухая 0,210
Штукатурка цементная 0,900
Эбонит 0,160

Какой песок лучше всего использовать для изготовления бетона?

Повсеместное использование песка в строительных работах позволяет расширить круг применения. Он является универсальным средством для приготовления различного вида раствора:

  • для бетонных смесей;
  • на стяжку полов;
  • декоративную штукатурку стен;
  • укладку стен блоками или кирпичом;
  • заливку несущих пли;
  • изготовление монолита.

Перечислять можно еще, главное понять суть. Но при возведении различного рода конструкций используется песок с различным составом и свойствами.

Уникальное свойство, перехода из рыхлого состояния в плотное. Позволяет использовать этот материал для защитной и естественной амортизации основы строения.

Если выделять производственную составляющую бетона, то здесь строительные организации да и частные строители отдают предпочтение именно речному песку. Его свойства позволяют начать использование без дополнительных манипуляций вроде промывки, как например карьерного.

Самым чистым среди добываемых песков является тот, который добывается со дна действующих рек. Он проходит дополнительный промывочную обработку и может сразу же использоваться по назначению. Однородная масса и отсутствие лишних примесей делают этот вид песка самым востребованным, несмотря на стоимость.

Бетон – особенный материал и требует точного расчета пропорций составляющих, а его качество зависит от наличия глинистых пород в песке. Ведь свойства глины в обволакивании песчинок добытого материала, что напрямую воздействует на качественное сцепление песка с другими составляющими бетонной смеси, в числе которых цемент.

По характеристикам песок еще делится на классы:

  • первый класс;
  • второй класс;
  • специальные пески.

Каждая из перечисленных групп используется для применения бетонных изделий, но только для узкого круга. Так, например, первый класс используется для отливки бетона, чьими основными характеристиками является:

  • качество;
  • высокая сопротивляемость к внешним воздействиям;
  • резкие перепады температуры, в числе которых морозостойкость.

Пески, относящиеся ко второму классу, применяются лишь для изготовления материалов, не требующих повышенной влагостойкости, например для плитки или облицовочных конструкций.

Специальные песчаные смеси необходимы при возведении бетонных или железобетонных конструкций. Подобные смеси позволяют усилить ряд показателей на сжатие и устойчивость к перепадам атмосферных сред.

Более подробно о свойствах и применении песка смотрите на видео:

Описание базовых марок поролона (ППУ)

В маркировке пен отражены основные характеристики ППУ — плотность и жесткость. Пример маркировки эластичной пены ST 2040: ST — группа поролона, 20 — значение плотности, 40 — значение жесткости.

Плотность – физическая величина, которая отражает соотношение массы и объем(кг/м3). Характеризует несущую способность ППУ и значительно влияет на стоимость поролона.

Жесткость (напряжение сжатия при заданной деформации) – способность материала сопротивляться деформации (кПа*10). Определяет область применения пены.

В зависимости от соотношения плотности и жесткости марки ППУ подразделяются на группы: ST — стандартные | S — мягкие | HS — сверхмягкие | EL — повышенной жесткости | HR — высокоэластичные

Обладает низким показателем плотности и высоким показателем жесткости. Относится к жестким маркам поролона. Используется для изготовления таких частей мебели, как спинки, подлокотники, подушки. Изделия из этой марки придают мебели большую жесткость по сравнению с вышеуказанными марками. Показатель прочности у марки EL 2040 ниже, чем у марки ST 2036, поэтому в качестве обивки ее применяют значительно реже.

Не используется для изготовления несущих частей мебели. Коэффициент долговечности не менее 9,0.

Относится к стандартным маркам ППУ средней плотности. Применяется при изготовлении деталей мебели: спинок, подлокотников, подушек, сидений и матрасов для мебели «среднего класса». Рассчитан на нагрузки до 60 кг. Показатели прочности позволяют использовать ППУ ST 2536 совместно с механизмами трансформации.

Возможно использование для изготовления несущих частей мебели. Коэффициент долговечности не менее 13,0.

Относится к стандартным и имеет высокую плотность. Обладает хорошей восстанавливаемостью и эластичностью, долговечен в эксплуатации. Из него изготавливают сиденья диванов и кресел, пуфики, матрасы и др. Используется и в сочетании с мягкими марками ППУ.

Рекомендуется использовать для изготовления несущих частей мебели с нагрузкой до 100 кг. Коэффициент долговечности не менее 18,0.

Относятся к стандартным маркам ППУ; имеют высокие показатели плотности; характеризуются отличными эксплуатационными качествами, долговечностью и упругостью. Применяются при изготовлении мебели «высокого класса»; при изготовлении изделий, эксплуатирующихся в жестком режиме (автомобильные кресла, сиденья для театров, кинотеатров, концертных залов и т. д.). Могут использоваться в сочетании со смягчающим слоем поролона мягких марок.

Рекомендуется использовать для изготовления несущих частей мебели с нагрузкой до 120 кг. Коэффициент долговечности не менее 22,0.

Вернуться к выбору поролона (ППУ)

Конвекция в атмосфере

Важность атмосферной конвекции велика, поскольку благодаря ней существуют такие явления, как ветры, циклоны, образование облаков, дожди и другие. Все эти процессы подчиняются физическим законам термодинамики

Среди процессов конвекции в атмосфере самым важным является круговорот воды. Здесь следует рассмотреть вопросы о том, что такое теплопроводность и теплоемкость воды. Под теплоемкостью воды понимается физическая величина, показывающая, какое количество теплоты необходимо передать 1 кг воды, чтобы ее температура увеличилась на один градус. Оно равно 4220 Дж.

Смотреть галерею

Круговорот воды осуществляется следующим образом: солнце нагревает воды Мирового океана, и часть воды испаряется в атмосферу. За счет процесса конвекции водяной пар поднимается на большую высоту, охлаждается, образуются облака и тучи, которые приводят к возникновению осадков в виде града или дождя.

Таблица теплопроводности строительных материалов — коэффициенты

Любые строительные работы начинаются с создания проекта. При этом планируется как расположение комнат в здании, так и рассчитываются главные теплотехнические показатели. От данных значений зависит, насколько будущая постройка будет теплой, долговечной и экономичной. Позволит определить теплопроводность строительных материалов – таблица, в которой отображены основные коэффициенты. Правильные расчеты являются гарантией удачного строительства и создания благоприятного микроклимата в помещении.

Чтобы дом был теплым без утеплителя потребуется определенная толщина стен, которая отличается в зависимости от вида материала

Конвекция в жидкостях и газах

Передача тепла в текучих средах осуществляется за счет процесса конвекции. Этот процесс предполагает перемещение молекул вещества между зонами с различной температурой, то есть при конвекции происходит перемешивание жидкости или газа. Когда текучая материя отдает тепло, ее молекулы теряют часть кинетической энергии, и материя становится более плотной. Наоборот, когда текучая материя нагревается, ее молекулы увеличивают свою кинетическую энергию, их движение становится более интенсивным, соответственно, объем материи увеличивается, а плотность уменьшается. Именно поэтому холодные слои материи стремятся опуститься вниз под действием силы тяжести, а горячие слои пытаются подняться вверх. Этот процесс приводит к перемешиванию материи, способствуя передачи тепла между ее слоями.

Конструкционные материалы и их теплопроводность

Теплопроводность вещества зависит от его плотности. Чем больше плотность вещества, тем выше теплопроводность. С увеличением пористости понижается ее коэффициент.

Низкий коэффициент теплопроводности материала определяет его хорошие теплоизоляционные качества.

Бетон

  • Плотность: 500 кг/м³–2 500 кг/м³. Показатель зависит от состава смеси.
  • Теплопроводность: 1,28–1,51 Вт/м*К. Показатель меняется в зависимости от консистенции бетона.

Бетонная смесь используется для заливки монолитного фундамента, а бетонные блоки – для закладки фундамента и возведения стен.

Железобетон

  • Плотность: 2 500 кг/м3; бетонная смесь без вибрирования (применения глубинного вибратора) – 2 400 кг/м3.
  • Теплопроводность: 1,69 Вт/м*К.

Лёгкий бетон на пористых заполнителях называют ячеистым бетоном.

Используют в качестве конструкционного и теплоизоляционного материала. Самые распространённые строительные материалы из бетона на пористых заполнителях — газобетон, пенобетон, керамзитобетон.

Данные материалы применяются для возведения многоэтажных, частных домов и для дополнительных пристроек: бань, гаражей, сараев.

Керамзитобетон

Полнотелые керамзитобетонные блоки производятся с помощью вибропрессования. Не имеют пустот и отверстий. Часто используются для кладки несущих стен или закладки фундамента.

Пустотелые керамзитобетонные блоки делают с применением специальных форм, позволяющих при заливке смеси сформировать герметичные или сквозные пустоты.

Обладают меньшей прочностью по сравнению с полнотелыми керамзитобетонными блоками. Имеют меньшую теплопроводность, что делает их оптимальным материалом для возведения нетяжёлых конструкций с требуемой высокой теплоизоляцией.

  • Плотность: 500 кг/м³–1 800 кг/м³.
  • Теплопроводность: 0,14–0,66 Вт/м*К.

Газобетон

Изготавливается из газосиликата. С помощью специализированных газообразователей внутри блока формируют приблизительно сферические поры (пустоты), их диаметр 1–3 мм.

  • Плотность: 300–800 кг/м3. Зависит от количества и размера пустот.
  • Теплопроводность: 0,1–0,3 Вт/м*К.

Пенобетон

Изготавливается с применением пенообразующих добавок. Имеет пористую структуру.

  • Плотность: 600–1 000 кг/м3.
  • Теплопроводность: 0,1–0,38 Вт/м*К.

Изготавливается из глины и наполнителя.

  • Плотность: 500 кг/м³–1 900 кг/м³;
  • Теплопроводность: 0,1–0,4 Вт/м*К.

Керамический кирпич

Изготавливается из обожжённой глины.

  • Плотность: полнотелый – 1 600 кг/м³–1 900 кг/м³; пустотелый – 1 100 кг/м³–1 400 кг/м³;
  • Теплопроводность: полнотелый – 0,56–0,86 Вт/м*К; пустотелый–0,35–0,41 Вт/м*К.

Изготавливается из песка и извести.

  • Плотность: 1 100 кг/м³–1 900 кг/м³;
  • Теплопроводность: 0,81–0,87 Вт/м*К.

Дерево

  • Плотность: 150 кг/м³–2 100 кг/м³;
  • Теплопроводность: 0,2–0,23 Вт/м*К.

Строительные конструкционные материалы, даже с низкой теплопроводностью, нуждаются в дополнительном утеплении.

Теплоемкость строительных материалов

Какими же должны быть стены частного дома, чтобы соответствовать строительным нормам? Ответ на этот вопрос имеет несколько нюансов. Чтобы с ними разобраться, будет приведен пример теплоемкости 2-х наиболее популярных строительных материалов: бетона и дерева. имеет значение 0,84 кДж/(кг*°C), а дерева – 2,3 кДж/(кг*°C).

На первый взгляд можно решить, что дерево – более теплоемкий материал, нежели бетон. Это действительно так, ведь древесина содержит практически в 3 раза больше тепловой энергии, нежели бетон. Для нагрева 1 кг дерева нужно потратить 2,3 кДж тепловой энергии, но при остывании оно также отдаст в пространство 2,3 кДж. При этом 1 кг бетонной конструкции способен аккумулировать и, соответственно, отдать только 0,84 кДж.

Но не стоит спешить с выводами. Например, нужно узнать, какую теплоемкость будет иметь 1 м 2 бетонной и деревянной стены толщиной 30 см. Для этого сначала нужно посчитать вес таких конструкций. 1 м 2 данной бетонной стены будет весить: 2300 кг/м 3 *0,3 м 3 = 690 кг. 1 м 2 деревянной стены будет весить: 500 кг/м 3 *0,3 м 3 = 150 кг.

  • для бетонной стены: 0,84*690*22 = 12751 кДж;
  • для деревянной конструкции: 2,3*150*22 = 7590 кДж.

Из полученного результата можно сделать вывод, что 1 м 3 древесины будет практически в 2 раза меньше аккумулировать тепло, чем бетон. Промежуточным материалом по теплоемкости между бетоном и деревом является кирпичная кладка, в единице объема которой при тех же условиях будет содержаться 9199 кДж тепловой энергии. При этом газобетон, как строительный материал, будет содержать только 3326 кДж, что будет значительно меньше дерева. Однако на практике толщина деревянной конструкции может быть 15-20 см, когда газобетон можно уложить в несколько рядов, значительно увеличивая удельную теплоемкость стены.

В строительстве очень важной характеристикой является теплоемкость строительных материалов. От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания

Прежде, чем приступить к ознакомлению с теплоизоляционными характеристиками отдельных строительных материалов, необходимо понять, что собой представляет теплоемкость и как она определяется.

Таблица теплопроводности материалов на Д-И

Доломит плотный сухой 2800 1.7
Дуб вдоль волокон 700 0.23 2300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300
Дюралюминий 2700…2800 120…170 920
Железо 7870 70…80 450
Железобетон 2500 1.7 840
Железобетон набивной 2400 1.55 840
Зола древесная 780 0.15 750
Золото 19320 318 129
Известняк (облицовка) 1400…2000 0.5…0.93 850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680
Изделия вулканитовые 350…400 0.12
Изделия диатомитовые 500…600 0.17…0.2
Изделия ньювелитовые 160…370 0.11
Изделия пенобетонные 400…500 0.19…0.22
Изделия перлитофосфогелевые 200…300 0.064…0.076
Изделия совелитовые 230…450 0.12…0.14
Иней 0.47
Ипорка (вспененная смола) 15 0.038

Коэффициент теплопроводности.

Количество тепла, которое проходит через стены (а по научному — интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас  в качестве материалов для утепления зданий  наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами — Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда)  и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур  стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие «тепловое сопротивление материала». Это величина обратная теплопроводности.  Если, на пример, теплопроводность пенопласта толщиной 10 см — 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

Засыпная изоляция STEICO zell

   Еще один замечательный продукт той же фирмы — STEICO zell — применяется в качестве экологически чистой натуральной засыпной изоляции из древесного волокна и используется в конструкциях стен, перекрытий, крыш; идеально подходит для быстрого заполнения труднодоступных мест и полостей. Материал STEICO zell также можно применять при изготовлении конструкций стен и/или крыш сборных домов на производственных линиях.                           Продукция STEICO zell состоит из калиброванных гидрофобизированных древесных волокон, которые заполняют все свободное пространство в конструкциях при задувании с помощью специального оборудования или засыпании вручную.  Для получения  плотного слоя теплоизоляции древесные волокна под  давлением задуваются в закрытые пространства или полости. Каждое из этих волокон включает в себя достоинства натуральной древесины: прочность, стабильность характеристик и очень хорошие теплоизоляционные свойства.

  Использование STEICO zell возможно как в вертикальных конструкциях стен, так и в качестве свободно расположенного теплоизоляционного материала на горизонтальных, сводчатых или легко наклоненных поверхностях, между стропилами или балками кровли. Независимо от того используется ли материал в новом строительстве или при ремонте старых зданий, является ли конструкция деревянной или какой-либо иной легкой конструкцией — STEICO zell позволяет создать качественную, экономически выгодную и самое главное — экологически безопасную теплоизоляцию. При работе с изоляцией из древесного волокна STEICO zell не образуются отходы, а небольшие остатки материала можно компостировать без угрозы для окружающей среды. Для удобства доставки STEICO zell упаковывается под вакуумом в специальные мешки, и компактно укладываются на паллетах. 

Основные характеристики: 

  • Вес упаковки 15кг;

  • Плотность упаковки 125 кг/м³;

  • Рекомендуемая объёмная плотность нанесения 32 — 45 кг/м³;

  • Коэффициент сопротивления диффузии водяного пара  μ  1 — 2;

  • Теплоёмкость 2100 Дж/кг·К;

  • Коэффициент теплопроводности λ  0,040 Вт/м·К.

Таблица – выражение основных параметров теплопроводности песка

Данная таблица поможет как начинающим строителям, так и тем, кто не новичок в этом деле, быстро и точно рассчитать необходимое количество песочного материала для будущей застройки.

Таблица теплопроводности

Если используется строительный вид песка стандартного ГОСТ образца, то при массе 1600 кгм3 теплопроводность будет составлять 0,35 Вт м*град., а теплоемкость 840 Джкг*град.

Если используется влажный речной песок, то параметры будут такие: масса от 1900 кгм3 имеет теплопроводность 0,814 Вт м*град, а теплоемкость 2090 Джкг*град.

Все эти данные взяты из различных пособий о физических величинах и теплотехнических таблиц, где приведены многие показатели именно для строительных материалов. Так что полезным будет иметь такую книжечку у себя.

Необходимость расчетов

Для чего же необходимо проводить эти вычисления, есть ли от них хоть какая-то польза на практике? Разберемся подробнее.

Оценка эффективности термоизоляции

В разных климатических регионах России разный температурный режим, поэтому для каждого из них рассчитаны свои нормативные показатели сопротивления теплопередаче. Проводятся эти расчеты для всех элементов строения, контактирующих с внешней средой. Если сопротивление конструкции находится в пределах нормы, то за утепление можно не беспокоиться.

В случае, если термоизоляция конструкции не предусмотрена, то нужно сделать правильный выбор утеплительного материала с подходящими теплотехническими характеристиками.

Тепловые потери

Тепловые потери дома

Не менее важная задача – прогнозирование тепловых потерь, без которого невозможно правильно спланировать систему отопления и создать идеальную термоизоляцию. Такие вычисления могут понадобиться при выборе оптимальной модели котла, количества необходимых радиаторов и правильной их расстановки.

Такие расчеты в здании проводятся для всех ограждающих конструкций, взаимодействующих с холодными потоками воздуха, а затем суммируются для определения общей потери тепла. На основании полученной величины проектируется система отопления, которая должна полностью компенсировать эти потери. Если же потери тепла получаются слишком большими, они влекут за собой дополнительные финансовые затраты, а это не всем «по карману». При таком раскладе нужно задуматься об улучшении системы термоизоляции.

Отдельно нужно поговорить про окна, для них сопротивление теплопередаче определяются нормативными документами. Самостоятельно проводить расчеты не нужно. Существуют уже готовые таблицы, в которых внесены значения сопротивления для всех типов конструкций окон и балконных дверей.Тепловые потери окон рассчитываются исходя из площади, а также разницы температур по разные стороны конструкции.

Расчеты, приведенные выше, подходят для новичков, которые делают первые шаги в проектировании энергоэффективных домов. Если же за дело берется профессионал, то его расчеты более сложные, так как дополнительно учитывается множество поправочных коэффициентов – на инсоляцию, светопоглощение, отражение солнечного света, неоднородность конструкций и другие.

Сравнительные технические характеристики скорлуп ППУ с другими теплоизоляторами

Скорлупы из пенополиуретана имеют закрытую пористую структуру, а значит, не впитывают влагу, сохраняют свои свойства в широчайшем диапазоне температур, способны прослужить 30 и более лет, обладают низким коэффициентом теплопроводности и эффективно сохраняют тепло.

Характеристик пенополиуретана в сравнении с иными материалами

Теплоизолятор Степень плотности (кг/м.куб) Коэф. теплопроводности (Вт/м*К) Пористость Срок эксплуатации (лет) Диапазон рабочих температур
ППУ 40-200 0,025 Закрытая 30 -180…+150
Минеральная вата 55-150 0,052-0,058 Открытая 5 -40…+120
Пенопласт 30-60 0,040-0,050 Закрытая 5-7 -50…+110
Пробковая плита 220-240 0,050-0,060 Закрытая 3 -30…+90
Пенобетон 250-400 0,145-0,160 Открытая 10 -30…+120

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это  способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем «абстрактный дом». В «абстрактном доме» стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен  постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

Методы определения

Эту информацию получают в ходе процесса измерения термического сопротивления с помощью специального оборудования. Сама процедура и используемые технические средства регламентируются государственным стандартом 7076-99. Он описывает требования к образцу, прибору, градуировке и допускает проведение испытаний лишь по двум схемам – ассиметричной и симметричной.

Сущность обоих методов заключается в том, что создается стационарный тепловой поток, который проходит через образец плоской формы. Толщина образца известна, а направление потока выбирается перпендикулярно наибольшим граням. В ходе процесса исследования производится измерение величины плотности теплового потока, а также температуры противоположных граней.

Число образцов, которое необходимо использовать для чистоты эксперимента, регламентируется для каждого конкретного вида бетона. Как правило, подобная информация содержится в государственном стандарте на конкретный материал. В том случае, когда ГОСТ не содержит подобных данных, число образцов выбирают равным пяти.

В ходе испытания в помещении должны поддерживаться определенные условия: уровень относительной влажности воздуха должен находиться в пределах 10% от 50-процентной отметки. Абсолютная температура в процессе испытаний должна находиться в пределах 290-300 К.

Теплопроводность: понятие и теория

Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

Потери тепла на разных участках постройки будут отличаться

Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.

Свойства

Областей применения песка много и любое строительство обязательно использует песок для составляющих частей постройки:

изготовление фундаментной основы здания;


Изготовление фундаментной основы

бетонные перекрытия, плиты или колонны и т.д;


Бетонные перекрытия

  • применяют при изготовлении фильтров, например под бетонную конструкцию;
  • даже для изготовления стекла.

Разновидностей песка тоже много, а следовательно различны и свойства каждого.

Есть пески, которые образуются:

природным способом;


Природный

при искусственной обработке.

Они различаются составом, размером и даже обработкой. В природе песок получается благодаря естественному разрушению более крупных пород минералов на мелкие песчинки. Но на это уходит много времени.

Ускорить процесс можно благодаря современным методам добычи.

После в песок в различных пропорциях добавляются и другие составляющие, придающие дополнительные свойства готовому песочному материалу.

Теплопроводность строительных материалов

Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.

Прежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.

Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.

Заключение

Песок – это уникальный природный материал, который помогает решать многие строительные вопросы. Свойства данного материала позволяют использовать его при возведении сложнейших конструкций.

А благодаря низкой теплоемкости этот материал идеально подходит для возведения помещений, где требуется поддерживать низкие температуры без резких перепадов.

Испокон веков песок использовался человеком, и считался самым надежным строительным материалом, который создала природа. Многообразие видов и сфер применения, помогает заранее продумать, какими свойствами будет обладать построенное здание.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector